Middle-aged SNRs W44 & IC443 and Cosmic-Rays: most likely reacceleration

Martina Cardillo
Elena Amato, Pasquale Blasi
INAF – Oss. Astrofisico di Arcetri
ALL PARTICLE SPECTRUM

KNEE

SNR accelerate Galactic Cosmic-Rays

Need to distinguish hadronic and leptonic components

Gamma-ray emission below 200 MeV detected by AGILE from the SNR W44, then confirmed by Fermi-LAT, also in IC443

Cosmic-Rays in SNRs... but acceleration or reacceleration?

Giuliani, Cardillo et al. 2011
Cardillo et al. 2014

Ackermann et al. (2013)
Middle aged SNRs ($t \geq 10^4$ yrs) with a slow shock velocity ($v_s \sim 100$ km/s)

Interaction with a molecular cloud (high average density, $n \sim 200$ cm$^{-3}$) correlated with GeV (and TeV for IC443) gamma-ray emission

Correlation with only a fraction of the radio emission

Hadronic emission described by a broken power-law with a very steep high-energy spectral index
REACCELERATION OR ACCELERATION?

REACCELERATION

✧ Pre-existing Galactic CR protons & electrons
✧ Reacceleration \rightarrow hardening of spectral indices steeper than $\alpha = (3r_{sh})/(r_{sh}-1)$
✧ Compression \rightarrow higher energies, higher spectrum ($s = (n_2/n_0)/r_{sh}$)
✧ Energy losses pp/ionization & ioniz/synch/Brems/IC
✧ Low-energy cut off and Malkov steepening

ACCELERATION

✧ Freshly accelerated CRs with a spectral index $\alpha = (3r_{sh})/(r_{sh}-1)$
✧ Compression \rightarrow higher energies, higher spectrum ($s = (n_2/n_0)/r_{sh}$)
✧ Energy losses
✧ Broken power–law with Malkov steepening

Crushed Cloud model (Blandford & Cowie 1982)

$\begin{align*}
\text{Galactic CRs} & : n_0, B_0 \\
\text{Reacceleration} & : n_1, B_1, r_{sh} \\
\text{Compression} & : n_2, B_2, s
\end{align*}$
REACCELERATION: our model

Crushed Cloud model (Blandford & Cowie 1982)

- Local Interstellar Spectrum from Voyager 1 (Potgieter 2013)
 \[\Rightarrow\] harder at low-energy: no need low-energy cut-off

- Hydrogen and Helium contribution with HE hardening.

- Adding also the only compressed Galactic component.

- Simple PL spectrum

- No steepening but HE cut-off

Graph

- Protons: LIS spectrum
- Electrons: LIS spectrum
- Protons: final
- Electrons: final

- \[B_0 = b \left(\frac{n_0}{1 \text{ cm}^{-3}} \right)^{1/2}\]
- \[n_m = 94 \ n_0 \ b \left(\frac{v_{sh}}{10^7 \text{ cm/s}} \right)\]
- \[B_m = (3/2)^{1/2} \left(\frac{n_m}{n_0} \right) B_0\]

Cardillo, Amato, Blasi, in preparation
REACCELERATION: our model

Maximum momentum

$$p_M = 8.7 \times 10^{-1} (B_0/1\,\mu G) \left(\frac{t_{int}}{10^4\,\text{yrs}} \right)^2 \left(\frac{L_c}{1\,\text{pc}} \right)^{-1} \left(\frac{v_{sh}}{10^7\,\text{cm/s}} \right)^4$$

Kraichnan diffusion

$$D(E) = \frac{1}{3} r_L c \left(\frac{k}{k_0} \right)^{1/2}$$

$$p_M \sim 21.5\,\text{GeV/c}$$

$$t_{int} \sim 1700\,\text{yrs} < t_{age}$$

$$r_{sh} = 3.72 \rightarrow \alpha = 2.1$$

$$n_2 \sim 10^4\,\text{cm}^{-3}, B_2 \sim 1\,\text{mG}$$

filling factor $f \sim 20\%$

$$L_c \sim 0.1\,\text{pc}$$

Preliminary

Cardillo, Amato, Blasi, in preparation
Gamma-ray emission can be explained by the only reacceleration

→ upper limit for efficiency of possible CR acceleration

- Hydrogen and **Helium** galactic contribution with HE hardening

- **Simple PL** spectrum equal for electrons and protons

- Electron/proton ratio \(\kappa_{ep} \sim 10^{-2} \)

- **No steepening** but HE cut-off

\[
\begin{align*}
\text{Protons:injection} & \quad \text{Electrons:injection} \\
\text{Protons:final} & \quad \text{Electrons:final}
\end{align*}
\]

Cardillo, Amato, Blasi, in preparation
Maximum momentum
\[p_M = 8.7 \times 10^{-1} \left(B_0 / 1 \mu G \right) \left(t_{\text{int}} / 10^4 \text{yrs} \right)^2 \left(L_c / 1 \text{pc} \right)^{-1} \left(v_{sh} / 10^7 \text{cm/s} \right)^4 \]

Kraichnan diffusion
\[D(E) = 1/3 \ r_L c \ (k/k_0)^{1/2} \]

\[p_M \approx 21.5 \text{ GeV/c} \]

\[\xi_{\text{SCR}} \approx 10^{-4} \]

\[t_{\text{int}} \approx 1700 \text{ yrs} < t_{\text{age}} \]
\[r_{sh} = 3.72 \rightarrow \alpha = 2.1 \]
\[n_2 \approx 10^4 \text{ cm}^{-3}, \ B_2 \approx 1 \text{ mG} \]
\[\text{filling factor } f \approx 20\% \]
\[L_c \approx 0.1 \text{ pc} \]

ACCELERATION: our model

NO BREAK!!

PRELIMINARY

Cardillo, Amato, Blasi, in preparation
PRELIMINARY
(new results from VERITAS and Fermi, see Kumar poster and Hewitt talk)

Reacceleration

acceleration

NO BREAK!!
The evidence of CR presence in the middle-aged SNRs cannot imply acceleration with certainty.

Reacceleration and compression of pre-existing CRs can explain gamma-ray emission from W44 and IC443. Only upper limit for freshly accelerated CR efficiency.

In both reacceleration and acceleration case, we can explain gamma-ray emission with a simple power-law with a high-energy cut-off.

- No broken-power law distributions
- No very steep high-energy index

However, the spectral index is likely steeper than the value provided by linear and no-linear DSA theory.
Thank you very much!