Initial Results from HAWC on Gamma-Ray Bursts

Joshua Wood
for the HAWC Collaboration

6th Fermi Symposium
November 10, 2015
Outline

• What is the HAWC Observatory?
• What can it contribute to GRB Science?
• Initial Results on Gamma-Ray Bursts
• Current real-time searches
High Altitude Water Cherenkov Observatory

- Inaugurated in March, 2015
- In central Mexico at an altitude of 4100 m
- Comprised of 300 water tanks instrumented with 4 upward facing photomultiplier tubes
- Detects secondary air shower particles at ground level from both gamma- and cosmic-ray primaries
HAWC Overview

- continuous readout of air shower events @ 24 kHz trigger rate
- for each event we reconstruct its angle & energy and determine type (γ or CR)
- ~100 GeV threshold near zenith
- angular resolution < 1.0°
- near 100% duty cycle
- 2 sr FoV (no need for pointing)
- 100 times size of FERMI @ 100 GeV
Simulated response to GRB090510

- Simulate response to GRB090510
 - extrapolate FERMI SED with abrupt 125 GeV cutoff
 - $z = 1$
 - $\cos(\Theta) = 0.9$
 - 200 signal photons

- HAWC can see full high energy time structure before, during & after a GRB
HAWC and GRBs

Simulated response to GRB090510

- Simulate response to GRB090510

FERMI

Simulated HAWC

HAWC and GRBs

Expect < 1.5 GRB per year from follow-ups of satellite reported GRBs with the full HAWC-300 detector

(I. Taboada, R.C. Gilmore, NIM A 742 (2014), 276-277)

- HAWC can see full high energy time structure before, during & after a GRB
Initial Results

• Follow-up observations of reported GRBs

Time Period

August 2, 2013 - July 8, 2014 (HAWC-111)
Partial detector, 83% uptime due to construction

GRB Selection

GRBs within 51° of zenith reported from:

LAT: 1 (GRB 130907A), but during downtime
GBM: ~40 (6 without data, only 1 since October 2013)
Swift: 22 (4 without data)
Initial Results

• Follow-up observations of reported GRBs

 Time Period

 August 2, 2013 - July 8, 2014 (HAWC-111)

 Partial detector, 83% uptime due to construction

 GRB Selection

 GRBs within 51° of zenith reported from:

 LAT: 1 (GRB 130907A), but during downtime

 GBM: ~40 (6 without data, only 1 since October 2013)

 Swift: 22 (4 without data)

 Analyzed 18 well localized bursts from **Swift**
Follow-up Method

- Define a 3° radius spatial bin (optimized for GRB gamma-rays seen by HAWC-111) around the reported Swift location.

- Count the number of air showers arriving in this bin during T90

- Compare to expected counts from rate at that location in local coordinates

- Obtain p-value from Poisson statistics and convert to σ
Follow-up Results

- No $>5\sigma$ detections
- Most significant result is GRB140607A
 3.4σ pre-trials,
 2.5σ post-trials
- Performing the follow-up method on 25,000 random locations across the sky throughout HAWC-III period yields $\mu = 0, \sigma = 1$

Full list of analyzed GRBs:

D. Lennarz, I. Taboada. Proceedings of the 34th ICRC
http://arxiv.org/abs/1508.07325
GRB130427A

• Most powerful ever detected z < 0.5. Longest high energy emission.

• Main data acquisition system (DAQ) was OFF at the time

• Less sensitive scaler DAQ was ON. No direction, just overall PMT rates. Provides limits on high energy emission.

• Easily detectable now with HAWC-300!

Real-Time GRB Searches

• HAWC triggers and reconstructs showers in real-time (~ 4 sec), all day, every day

• Currently running two search methods on real-time data:

 Method 1: Follow-ups of *Swift* triggers with ~2 min latency
 (same as presented here, but with full HAWC300)

 Method 2: Untriggered search of the full overhead sky on
 4 timescales (0.1, 1, 10, 100 sec) with ~4 sec latency

 Idea is roughly the same as method 1 (tile sky with optimal
 bins, analyze poisson distributed counts within fixed window)
 but you search the full sky continuously in time.

 Lots of trials!

 Full details: J. Wood. Proceedings of the 34th ICRC
Untriggered, All-Sky Search

- 1 second duration, shifted by 10% over the course of a full day with spatial bins shifted by 10% over the full sky yields $\sim 10^{12}$ trials

- Only requires 2x flux increase over triggered search, opens up sky where satellites are not overhead

- Let’s you see really cool background fluctuations!

 $P_{\text{pre}} = 6 \times 10^{-13}$, $P_{\text{post}} = 4 \times 10^{-2}$

Light Curve (Candidate #729)

Polarization Map

- Candidate location
- Signal

11
Untriggered, All-Sky Search

- 1 second duration, shifted by 10% over the course of a full day with spatial bins shifted by 10% over the full sky yields $\sim 10^{12}$ trials

- Only requires 2x flux increase over triggered search, opens up sky where satellites are not overhead

- Let’s you see really cool background fluctuations!

<table>
<thead>
<tr>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{\text{pre}} = 6 \times 10^{-13}$</td>
<td>$P_{\text{post}} = 4 \times 10^{-2}$</td>
</tr>
</tbody>
</table>

No significant detections yet.

AMON is working on adding our sub-threshold events to their database for correlation with other experiments.

Still working on getting a framework for reporting results to GCN.
Summary

• HAWC should be able to detect ~1 GRB per year, providing temporal and spectral information at ~100 GeV

• Sensitive enough to detect several historical bursts (GRB090510, GRB130427A)

• Running both triggered and untriggered GRB searches in real-time

• No significant detections yet, but the future is bright!
Backup
18 *Swift*-detected GRBs

<table>
<thead>
<tr>
<th>GRB</th>
<th>Trigger Number</th>
<th>Time UTC</th>
<th>RA J2000</th>
<th>DEC J2000</th>
<th>Zenith Angle (deg)</th>
<th>BAT T90 (s)</th>
<th>Significance (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140628A</td>
<td>602803</td>
<td>13:35:37</td>
<td>02h42m39.88s</td>
<td>-0d23m05.7s</td>
<td>26.0</td>
<td>10.5</td>
<td>-0.74</td>
</tr>
<tr>
<td>140622A</td>
<td>602278</td>
<td>09:36:04</td>
<td>21h08m41.56s</td>
<td>-14d25m09.3s</td>
<td>33.4</td>
<td>0.13</td>
<td>-0.93</td>
</tr>
<tr>
<td>140607A</td>
<td>601051</td>
<td>17:13:31</td>
<td>05h45m29.52s</td>
<td>18d54m14.4s</td>
<td>27.9</td>
<td>109.9</td>
<td>3.42</td>
</tr>
<tr>
<td>140518A</td>
<td>599287</td>
<td>09:17:46</td>
<td>15h09m00.60s</td>
<td>42d25m05.6s</td>
<td>48.6</td>
<td>60.5</td>
<td>-0.61</td>
</tr>
<tr>
<td>140430A</td>
<td>597722</td>
<td>20:33:36</td>
<td>06h51m44.61s</td>
<td>23d01m25.2s</td>
<td>31.3</td>
<td>173.6</td>
<td>-1.75</td>
</tr>
<tr>
<td>140423A</td>
<td>596901</td>
<td>08:31:53</td>
<td>13h09m08.54s</td>
<td>49d50m29.4s</td>
<td>46.9</td>
<td>134</td>
<td>0.21</td>
</tr>
<tr>
<td>140419A</td>
<td>596426</td>
<td>04:06:51</td>
<td>08h27m57.56s</td>
<td>46d14m25.3s</td>
<td>45.3</td>
<td>94.7</td>
<td>1.35</td>
</tr>
<tr>
<td>140414A</td>
<td>GA</td>
<td>06:06:29</td>
<td>13h01m14.40s</td>
<td>56d54m07.2s</td>
<td>37.8</td>
<td>0.7</td>
<td>-0.18</td>
</tr>
<tr>
<td>140408A</td>
<td>595141</td>
<td>13:15:54</td>
<td>19h22m51.83s</td>
<td>-12d35m42.5s</td>
<td>32.4</td>
<td>4.00</td>
<td>-0.02</td>
</tr>
<tr>
<td>140331A</td>
<td>594081</td>
<td>05:49:48</td>
<td>08h59m27.46s</td>
<td>02d43m02.3s</td>
<td>45.7</td>
<td>209</td>
<td>-2.18</td>
</tr>
<tr>
<td>140215A</td>
<td>586680</td>
<td>04:07:10</td>
<td>06h56m35.81s</td>
<td>41d47m11.7s</td>
<td>23.2</td>
<td>84.2</td>
<td>0.30</td>
</tr>
<tr>
<td>140206A</td>
<td>585834</td>
<td>07:17:20</td>
<td>09h41m20.26s</td>
<td>66d45m38.6s</td>
<td>47.7</td>
<td>93.6</td>
<td>-1.86</td>
</tr>
<tr>
<td>140129A</td>
<td>585128</td>
<td>03:23:59</td>
<td>02h31m33.78s</td>
<td>-01d35m43.4s</td>
<td>47.8</td>
<td>2.99</td>
<td>1.65</td>
</tr>
<tr>
<td>140114A</td>
<td>583861</td>
<td>11:57:40</td>
<td>12h34m05.16s</td>
<td>27d57m02.6s</td>
<td>11.1</td>
<td>139.7</td>
<td>0.29</td>
</tr>
<tr>
<td>131229A</td>
<td>582374</td>
<td>06:39:24</td>
<td>05h40m55.61s</td>
<td>-04d23m46.7s</td>
<td>27.7</td>
<td>13.86</td>
<td>1.23</td>
</tr>
<tr>
<td>131227A</td>
<td>582184</td>
<td>04:44:51</td>
<td>04h29m30.78s</td>
<td>28d52m58.9s</td>
<td>10.1</td>
<td>18.0</td>
<td>-0.48</td>
</tr>
<tr>
<td>131117A</td>
<td>577968</td>
<td>00:34:04</td>
<td>22h09m19.36s</td>
<td>-31d45m44.3s</td>
<td>50.9</td>
<td>11.00</td>
<td>0.27</td>
</tr>
<tr>
<td>131001A</td>
<td>GA</td>
<td>05:37:24</td>
<td>00h33m12.96s</td>
<td>25d33m25.2s</td>
<td>12.4</td>
<td>4.9</td>
<td>0.96</td>
</tr>
</tbody>
</table>