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-­‐  Extended	
  energy	
  range:	
  200	
  MeV	
  –	
  100	
  GeV	
  �	
  100	
  MeV	
  –	
  820	
  GeV	
  

-­‐  Significant	
  high-­‐energy	
  cutoff	
  feature	
  in	
  IGRB	
  spectrum,	
  consistent	
  with	
  simple	
  

source	
  populations	
  attenuated	
  by	
  EBL	
  

-­‐  ~50%	
  of	
  total	
  EGB	
  above	
  100	
  GeV	
  now	
  resolved	
  into	
  individual	
  LAT	
  sources	
   4	
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DM	
  annihila=on	
  signal	
  from	
  all	
  DM	
  halos	
  at	
  
all	
  redshiAs	
  should	
  contribute	
  to	
  the	
  IGRB.	
  
	
  
	
  

DM	
  halos	
  and	
  substructure	
  expected	
  at	
  all	
  
scales	
  down	
  to	
  a	
  Mmin	
  ~	
  10-­‐6	
  Msun.	
  
	
  
Gamma-­‐ray	
  aMenua=on	
  due	
  to	
  the	
  EBL	
  and	
  
‘redshiAing’	
   effects	
   should	
   mean	
   lower	
  
redshiAs	
  (z	
  ≤	
  2)	
  contribute	
  the	
  most.	
  
	
  
	
  
We	
   calculated	
   the	
   expected	
   level	
   of	
   this	
  
cosmological	
  DM	
  annihila7on	
  signal	
   in	
  our	
  
work.	
  

Zoom	
  sequence	
  from	
  100	
  to	
  0.5	
  Mpc/h	
  	
  
Millenium-­‐II	
  simulation	
  boxes	
  (Boylan-­‐Kolchin+09)	
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FLUX from 
extragalactic 

DM annihilation 

The	
  flux	
  multiplier	
  is	
  a	
  measure	
  of	
  the	
  clumpiness	
  of	
  the	
  DM	
  in	
  the	
  Universe,	
  
and	
  is	
  the	
  main	
  source	
  of	
  theoretical	
  uncertainty	
  in	
  this	
  game.	
  

Uncertainties	
  in	
  this	
  parameter	
  traditionally	
  huge!	
  

Theoretical	
  predictions	
  for	
  the	
  cosmological	
  signal	
  

The DM extragalactic annihilation flux 
can be computed in the Halo Model 
from 3 or more quantities 
determined from simulations 
or 
directly from the Power Spectrum, 
with minimal assumptions

Conclusion
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Figure 2. Mass dependence of the best-fitting Einasto parameters for all
haloes in our sample at z = 0. Only relaxed haloes with more than 5000
particles within the virial radius are considered. The top and bottom panels
show, respectively, the concentration, c = r200/r−2, and shape parameter, α,
as a function of halo virial mass. Individual points are coloured according to
the third parameter (see colour bar on the right of each panel). The connected
symbols trace the median values for each Millennium Simulation (see legend
in the top panel); thin solid lines delineate the 25 to 75 percentile range.
The dashed curves indicate the fitting formulae proposed by Gao et al.
(2008). For clarity only 10 000 haloes per simulation are shown in this
figure. Haloes shown in grey are systems where the best-fitting scale radius
is smaller than the convergence radius; these fits are deemed unreliable
and the corresponding haloes are not included in the analysis. The grey
vertical bars highlight three different mass bins used to explore parameter
variations at fixed halo mass (see Sections 4.3 and 4.4). The small boxes
indicate haloes in each of those bins with average, higher-than-average and
lower-than-average values of α (bottom panel) or of the concentration (top
panel).

concentration (Neto et al. 2007). An ideal definition of formation
time would result in a natural correspondence between the charac-
teristic density of a halo at z = 0 and the density of the Universe at
the time of its assembly.

We explore two possibilities in Fig 3. Here, we show the mean
density enclosed within various characteristic radii at z = 0 ver-
sus the critical density of the Universe at the time when the main
progenitor mass equals the mass enclosed within the same radii.

The left-hand panels correspond to radii enclosing 1/4, 1/2 and
3/4 of the virial mass of the halo. The dots indicate individual
haloes coloured by halo mass, as shown in the colour bar at the top.
Boxes and whiskers trace the 10th, 25th, 75th and 90th percentiles

in bins of ρcrit. Note the tight but rather weak (and non-linear)
correlation between densities at these radii. This confirms our earlier
statement that ‘half-mass’ formation times are unreliable indicators
of halo characteristic density: haloes with very different z1/2 may
nevertheless have similar concentrations.

The right-hand panels of Fig. 3 show the same density correla-
tions, but measured at various multiples of r−2, the scale radius of
the mass profile at z = 0. The middle panel shows that the mean den-
sity within r−2, ⟨ρ−2⟩ = M−2/(4π/3)r3

−2 is directly proportional to
the critical density of the Universe at the time when the virial mass
of the main progenitor equals M−2. Intriguingly, this is also true
at r−2/2 (top-right panel) and at 2 × r−2 (bottom-right panel), al-
though with different proportionality constants (listed in the figure
legends).

This means that there is an intimate relation between the mass
profile of a halo and the shape of its MAH, in the sense that, once
the scale radius is specified, the MAH can be reconstructed from
the mass profile, and vice versa. Since mass profiles are nearly
self-similar when scaled to r−2, this implies that accretion histories
must also be approximately self-similar when scaled appropriately.
The MAH self-similarity has been previously discussed by van den
Bosch (2002), but its relation to the shape of the mass profile, as
highlighted here, has so far not been recognized.

4.3 NFW accretion histories and mass profiles

We explore further the relation between MAH and mass profile
by casting both in a way that simplifies their comparison, i.e. in
terms of mass versus density. In the case of the mass profile, this
is just the enclosed mass–mean inner density relation, M(⟨ρ⟩) (see
Section 3.1). For the MAH, this reduces to expressing the virial
mass of the main progenitor in terms of the critical density, rather
than the redshift, M(ρcrit(z)). In what follows, we shall scale all
masses to the virial mass of the halo at z = 0, M0; ρcrit(z) to the
value at present, ρ0; and ⟨ρ⟩ to 200 ρ0.

The top-left panel of Fig. 4 shows, in these scaled units, the av-
erage M(⟨ρ⟩) profile for haloes in three different narrow mass bins
(indicated by the grey vertical bars in the bottom panel of Fig. 2).
These mean profiles are computed by averaging halo masses, for
given ⟨ρ⟩, after scaling all individual haloes as indicated above. As
expected, each profile is well fitted by an NFW profile where the
concentration increases gradually with decreasing mass. The heavy
symbols on each profile indicate the value of M−2 and ⟨ρ−2⟩. The
top-right panel shows the same data, but scaled to these character-
istic masses and densities. Clearly, the three profiles follow closely
the same NFW shape, which is fixed in these units.

The corresponding MAHs, computed as above by averaging
accretion histories of scaled individual haloes, are shown in the
bottom-left panel of Fig. 4. The heavy symbols on each profile
again indicate the value of M−2 (as in the above panel), as well as
ρcrit(z−2) = 776 ⟨ρ−2⟩, computed using the relation shown in the
middle-right panel of Fig. 3.

In these scaled units, a single point can be used to specify the
‘concentration’ of an NFW profile, which is shown by the dashed
curves. Interestingly, these provide excellent descriptions of the
MAHs: rescaled to their own characteristic density and mass they
all look alike and also follow closely the NFW shape (bottom-right
panel of Fig. 4). The MAHs and mass profiles of CDM haloes are
not only nearly self-similar: they both have similar shapes that may
be approximated very well by the NFW profile.

This implies that the concentration of the mass profile just reflects
the ‘concentration’ of the MAH. Indeed, assuming that the NFW
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Figure 1. Halo density profiles and accretion histories. Left-hand panel: median density profiles of MS-II relaxed haloes in the mass range 1.24 <

log M200/(1010 h−1 M⊙) < 1.54 (corresponding to particle numbers in the range 2.5 × 104 < N200 < 5 × 104), selected according to their concentra-
tion (see boxes in the top panel of Fig. 2). Densities are shown scaled to ρ0, the critical density at z = 0, and weighted by r2 in order to enhance the dynamic
range of the plot. Radii are scaled to the virial radius, r200. The best-fitting Einasto profiles are shown by the thin solid curves, with parameters listed in the
legend. Dot–dashed curves indicate NFW profiles (whose shape is fixed in these units) matched at the scale radius, r−2, where the r2ρ profiles peak. Arrows
indicate the half-mass radius, r1/2. Right-hand panel: median MAHs of the same set of haloes chosen for the left-hand panel. Halo accretion history is defined
as the evolution of the mass of the main progenitor, expressed in units of the mass of the halo at z = 0. The heavy circles indicate the redshift, z−2, when the
progenitor’s mass equals the mass, M−2, enclosed within the scale radius at z = 0. The starred symbols indicate the half-mass formation redshift.

In the scaled units of Fig. 1 the scale radius, r−2, signals the
location of the maximum of each curve, and different concentrations
show as shifts in the position of the maxima, which are indicated
by large filled circles. In addition to their different concentrations,
the profiles differ as well in α, which increases with decreasing
concentration (see legends in Fig. 1). Arrows indicate the half-
mass radius of each profile. Dot–dashed curves show NFW profiles
(whose shape is fixed in this plot) with the same concentration as
the best Einasto fit (solid lines). The density profile curves more
gently than NFW for α ! 0.18 and less gradually than NFW for
α " 0.18, respectively.

The (median) MAHs corresponding to the same sets of haloes
are shown in the right-hand panel of Fig. 1. We define the MAH of
a halo as the evolution of the virial mass of the main progenitor,3

usually expressed as a function of the scalefactor a = 1/(1 + z),
and normalized to the present-day value, M0 = M200(z = 0). As ex-
pected, more concentrated haloes accrete a larger fraction of their
final mass earlier on. The filled stars indicate the ‘half-mass for-
mation redshift’, z1/2, whereas the filled circles indicate z−2, the
redshift when the mass of the main progenitor first reaches M−2,
the mass enclosed within r−2 at z = 0.

4 R ESULTS

4.1 The mass–concentration–shape relations

The top panel of Fig. 2 shows the mass–concentration relation for
our sample of relaxed haloes at z = 0. Concentrations are estimated
from Einasto fits, and are colour coded by the shape parameter, α,
as indicated by the colour bar. The open symbols track the median
concentrations as a function of mass. The thin solid lines trace the

3 The main progenitor of a given dark matter halo is found by tracing
backwards in time the most massive halo along the main branch of its
merger tree.

25th and 75th percentiles of the scatter at fixed mass. Different
symbols are used for the different MS runs, as specified in the
legend. Note the excellent agreement in the overlapping mass range
of each simulation, which indicates that our fitting procedure is
robust to the effects of numerical resolution.

The bottom panel of Fig. 2 shows the mass–α relation, coloured
this time by concentration. The trend is again consistent with earlier
work; the median values of α are fairly insensitive to halo mass,
except at the highest masses, where it increases slightly. The mass–
concentration–shape trends are consistent with earlier work; for
example, the dashed lines correspond to the fitting formulae pro-
posed by Gao et al. (2008) and reproduce the overall trends very
well.

Fig. 2 illustrates an interesting point already hinted at in Fig. 1:
the shape parameter seems to correlate with concentration at given
mass. Interestingly, haloes of average concentration have approx-
imately the same shape parameter (α ≈ 0.18, i.e. quite similar to
NFW), regardless of mass. Haloes with higher-than-average con-
centration have smaller values of α and vice versa. This suggests
that the same mechanism responsible, at given mass, for deviations
in concentration from the mean might also be behind the different
mass profile shapes at z = 0 parametrized by α. We explore this
possibility next.

4.2 Characteristic densities and assembly times

As pointed out by Navarro et al. (1997) and confirmed by subsequent
work (see, e.g. Jing 2000), the scatter in concentration is closely
related to the accretion history of a halo: the earlier (later) a halo is
assembled the higher (lower) its concentration.

This is clear from the assembly histories shown in Fig. 1, which
illustrate as well that defining ‘formation time’ in a way that corre-
lates strongly and unequivocally with concentration is not straight-
forward. For example, the often-used half-mass formation redshift,
z1/2, varies only weakly with c, making it an unreliable proxy for

The Halo Model approach
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3. HALO MASS FUNCTION

3.1. Fitting Formula and General Results

Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of the power
spectrum, successful analytical Ansätze predict the halo abun-
dance quite accurately by using a universal function describ-
ing the mass fraction of matter in peaks of a given height, ! !
"c/#(M; z), in the linear density field smoothed at some scale R ¼
(3M /4$%̄m)

1/3 (Press & Schechter 1974; Bond et al. 1991; Sheth
& Tormen 1999). Here, "c # 1:69 is a constant corresponding to
the critical linear overdensity for collapse and #(M ; z) is the rms
variance of the linear density field smoothed on scale R(M ). The
traditional nonlinear mass scale M$ corresponds to # ¼ "c. This
fact has motivated the search for accurate universal functions de-
scribing simulation results by Jenkins et al. (2001), White (2002),
and Warren et al. (2006). Following these studies, we choose the
following functional form to describe halo abundance in our
simulations:

dn

dM
¼ f (#)

%̄m
M

d ln #%1

dM
: ð2Þ

In extended Press-Schechter theory, the overdensity at a location
in a linear density field follows a random walk with decreasing
smoothing scale. The function f (#) is the #-weighted distribution
of first crossings of these random walks across a barrier separat-
ing collapsed objects from uncollapsed regions (e.g., where the
random-walking overdensity first crosses "c). The function f (#)
is expected to be universal to the changes in redshift and cos-
mology and is parameterized as

f (#) ¼ A
#

b

! "%a

þ1

# $
e%c=# 2

; ð3Þ

where

#2 ¼
Z

P(k)Ŵ (kR)k 2 dk; ð4Þ

P(k) is the linear matter power spectrum as a function of wave-
number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #%1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
a, b, and c are constants to be calibrated by simulations. The pa-
rameter A sets the overall amplitude of the mass function, while a
and b set the slope and amplitude of the low-mass power law, re-
spectively. The parameter c determines the cutoff scale at which
the abundance of halos exponentially decreases.

The best-fit values of these parameters were determined by fit-
ting equation (3) to all the z ¼ 0 simulations using &2 minimiza-
tion and are listed in Table 2 for each value of !. For! ) 1600,

we fix the value of A to be 0.26 without any loss of accuracy.12

This allows the other parameters to vary monotonically with !,
allowing for smooth interpolation between values of !.
Figure 5 shows the mass function measured for three values

of ! and the corresponding best-fit analytic functions. We plot
(M 2/%̄m) dn/dM rather than dn/dM to reduce the dynamic range
of the y-axis, as dn/dM values span nearly 14 orders of magni-
tude. The figure shows that as ! increases the halo masses be-
come systematically smaller. Thus, from ! ¼ 200 to 3200, the
mass scale of the exponential cutoff reduces substantially. The
shape of the mass function is also altered; at! ¼ 200 the loga-
rithmic slope at low masses is *%1.85, while at ! ¼ 3200 the
slope is nearly%2. This change in slope is due to two effects. First,
the fractional change in mass when converting between values of
! is not a constant; it depends on halo mass. Because halo con-
centrations are higher for smaller halos, the fractional change is
higher at lower masses, thus steepening the mass function. Sec-
ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h%1 M+, because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
mass (e.g., Moore et al. 1999; Gao et al. 2004), and the largest11 A convenient property of the Sheth & Tormenmass function is that one re-

covers the mean matter density of the universe when integrating over all mass;
the function is normalized such that

R
f (#) d ln #%1 ¼ 1. Eq. (3) does not con-

verge when integrating to log #%1 ¼ %1. In Appendix C we present a modified
fitting function that is properly normalized at all ! but still produces accurate
results at z ¼ 0.

12 Although a four-parameter function is required to accurately fit the data at
low!, at high overdensities the error bars are sufficiently large that a degeneracy
between A and a emerges, and the data can be fit with only three free parameters,
given a reasonable choice for A.

Fig. 5.—Measured mass functions for all WMAP1 simulations, plotted as
(M 2/%̄m) dn/dM against logM . The solid curves are the best-fit functions from
Table 2. The three sets of points show results for! ¼ 200, 800, and 3200 ( from
top to bottom). To provide a rough scaling betweenM and #%1, the top axis of the
plot shows#%1 for thismass range for theWMAP1 cosmology. The slight offset be-
tween the L1280 results and the solid curves is due to the slightly lower value of
"m ¼ 0:27.
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3. HALO MASS FUNCTION

3.1. Fitting Formula and General Results

Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of the power
spectrum, successful analytical Ansätze predict the halo abun-
dance quite accurately by using a universal function describ-
ing the mass fraction of matter in peaks of a given height, ! !
"c/#(M; z), in the linear density field smoothed at some scale R ¼
(3M /4$%̄m)

1/3 (Press & Schechter 1974; Bond et al. 1991; Sheth
& Tormen 1999). Here, "c # 1:69 is a constant corresponding to
the critical linear overdensity for collapse and #(M ; z) is the rms
variance of the linear density field smoothed on scale R(M ). The
traditional nonlinear mass scale M$ corresponds to # ¼ "c. This
fact has motivated the search for accurate universal functions de-
scribing simulation results by Jenkins et al. (2001), White (2002),
and Warren et al. (2006). Following these studies, we choose the
following functional form to describe halo abundance in our
simulations:
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in a linear density field follows a random walk with decreasing
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of first crossings of these random walks across a barrier separat-
ing collapsed objects from uncollapsed regions (e.g., where the
random-walking overdensity first crosses "c). The function f (#)
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P(k) is the linear matter power spectrum as a function of wave-
number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #%1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
a, b, and c are constants to be calibrated by simulations. The pa-
rameter A sets the overall amplitude of the mass function, while a
and b set the slope and amplitude of the low-mass power law, re-
spectively. The parameter c determines the cutoff scale at which
the abundance of halos exponentially decreases.

The best-fit values of these parameters were determined by fit-
ting equation (3) to all the z ¼ 0 simulations using &2 minimiza-
tion and are listed in Table 2 for each value of !. For! ) 1600,

we fix the value of A to be 0.26 without any loss of accuracy.12

This allows the other parameters to vary monotonically with !,
allowing for smooth interpolation between values of !.
Figure 5 shows the mass function measured for three values

of ! and the corresponding best-fit analytic functions. We plot
(M 2/%̄m) dn/dM rather than dn/dM to reduce the dynamic range
of the y-axis, as dn/dM values span nearly 14 orders of magni-
tude. The figure shows that as ! increases the halo masses be-
come systematically smaller. Thus, from ! ¼ 200 to 3200, the
mass scale of the exponential cutoff reduces substantially. The
shape of the mass function is also altered; at! ¼ 200 the loga-
rithmic slope at low masses is *%1.85, while at ! ¼ 3200 the
slope is nearly%2. This change in slope is due to two effects. First,
the fractional change in mass when converting between values of
! is not a constant; it depends on halo mass. Because halo con-
centrations are higher for smaller halos, the fractional change is
higher at lower masses, thus steepening the mass function. Sec-
ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h%1 M+, because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
mass (e.g., Moore et al. 1999; Gao et al. 2004), and the largest11 A convenient property of the Sheth & Tormenmass function is that one re-

covers the mean matter density of the universe when integrating over all mass;
the function is normalized such that

R
f (#) d ln #%1 ¼ 1. Eq. (3) does not con-

verge when integrating to log #%1 ¼ %1. In Appendix C we present a modified
fitting function that is properly normalized at all ! but still produces accurate
results at z ¼ 0.

12 Although a four-parameter function is required to accurately fit the data at
low!, at high overdensities the error bars are sufficiently large that a degeneracy
between A and a emerges, and the data can be fit with only three free parameters,
given a reasonable choice for A.

Fig. 5.—Measured mass functions for all WMAP1 simulations, plotted as
(M 2/%̄m) dn/dM against logM . The solid curves are the best-fit functions from
Table 2. The three sets of points show results for! ¼ 200, 800, and 3200 ( from
top to bottom). To provide a rough scaling betweenM and #%1, the top axis of the
plot shows#%1 for thismass range for theWMAP1 cosmology. The slight offset be-
tween the L1280 results and the solid curves is due to the slightly lower value of
"m ¼ 0:27.
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3. HALO MASS FUNCTION

3.1. Fitting Formula and General Results

Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of the power
spectrum, successful analytical Ansätze predict the halo abun-
dance quite accurately by using a universal function describ-
ing the mass fraction of matter in peaks of a given height, ! !
"c/#(M; z), in the linear density field smoothed at some scale R ¼
(3M /4$%̄m)

1/3 (Press & Schechter 1974; Bond et al. 1991; Sheth
& Tormen 1999). Here, "c # 1:69 is a constant corresponding to
the critical linear overdensity for collapse and #(M ; z) is the rms
variance of the linear density field smoothed on scale R(M ). The
traditional nonlinear mass scale M$ corresponds to # ¼ "c. This
fact has motivated the search for accurate universal functions de-
scribing simulation results by Jenkins et al. (2001), White (2002),
and Warren et al. (2006). Following these studies, we choose the
following functional form to describe halo abundance in our
simulations:

dn

dM
¼ f (#)

%̄m
M

d ln #%1

dM
: ð2Þ

In extended Press-Schechter theory, the overdensity at a location
in a linear density field follows a random walk with decreasing
smoothing scale. The function f (#) is the #-weighted distribution
of first crossings of these random walks across a barrier separat-
ing collapsed objects from uncollapsed regions (e.g., where the
random-walking overdensity first crosses "c). The function f (#)
is expected to be universal to the changes in redshift and cos-
mology and is parameterized as

f (#) ¼ A
#

b

! "%a

þ1

# $
e%c=# 2

; ð3Þ

where

#2 ¼
Z

P(k)Ŵ (kR)k 2 dk; ð4Þ

P(k) is the linear matter power spectrum as a function of wave-
number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #%1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
a, b, and c are constants to be calibrated by simulations. The pa-
rameter A sets the overall amplitude of the mass function, while a
and b set the slope and amplitude of the low-mass power law, re-
spectively. The parameter c determines the cutoff scale at which
the abundance of halos exponentially decreases.

The best-fit values of these parameters were determined by fit-
ting equation (3) to all the z ¼ 0 simulations using &2 minimiza-
tion and are listed in Table 2 for each value of !. For! ) 1600,

we fix the value of A to be 0.26 without any loss of accuracy.12

This allows the other parameters to vary monotonically with !,
allowing for smooth interpolation between values of !.
Figure 5 shows the mass function measured for three values

of ! and the corresponding best-fit analytic functions. We plot
(M 2/%̄m) dn/dM rather than dn/dM to reduce the dynamic range
of the y-axis, as dn/dM values span nearly 14 orders of magni-
tude. The figure shows that as ! increases the halo masses be-
come systematically smaller. Thus, from ! ¼ 200 to 3200, the
mass scale of the exponential cutoff reduces substantially. The
shape of the mass function is also altered; at! ¼ 200 the loga-
rithmic slope at low masses is *%1.85, while at ! ¼ 3200 the
slope is nearly%2. This change in slope is due to two effects. First,
the fractional change in mass when converting between values of
! is not a constant; it depends on halo mass. Because halo con-
centrations are higher for smaller halos, the fractional change is
higher at lower masses, thus steepening the mass function. Sec-
ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h%1 M+, because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
mass (e.g., Moore et al. 1999; Gao et al. 2004), and the largest11 A convenient property of the Sheth & Tormenmass function is that one re-

covers the mean matter density of the universe when integrating over all mass;
the function is normalized such that

R
f (#) d ln #%1 ¼ 1. Eq. (3) does not con-

verge when integrating to log #%1 ¼ %1. In Appendix C we present a modified
fitting function that is properly normalized at all ! but still produces accurate
results at z ¼ 0.

12 Although a four-parameter function is required to accurately fit the data at
low!, at high overdensities the error bars are sufficiently large that a degeneracy
between A and a emerges, and the data can be fit with only three free parameters,
given a reasonable choice for A.

Fig. 5.—Measured mass functions for all WMAP1 simulations, plotted as
(M 2/%̄m) dn/dM against logM . The solid curves are the best-fit functions from
Table 2. The three sets of points show results for! ¼ 200, 800, and 3200 ( from
top to bottom). To provide a rough scaling betweenM and #%1, the top axis of the
plot shows#%1 for thismass range for theWMAP1 cosmology. The slight offset be-
tween the L1280 results and the solid curves is due to the slightly lower value of
"m ¼ 0:27.
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‘‘exposed’’ as distinct halos when halos are identified with ! ¼
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subhalos will only impact overall abundance of objects at low
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tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
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results at z ¼ 0.
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an extrapolation of more 
than 10 orders of magnitude!

10�9, 10�6 h�1 M� ?

Ingredients:
1. Halos mass function
2. Halos density profile (NFW, Einasto, etc ...)
3. Halos concentration 
+ all of the above for subhalos 

> 106 h�1 M�

�(z, ⇥̂) = �̄(z)�(z, ⇥̂)

(Sefusatti, DSU13)

Simulations	
  do	
  
not	
  resolve	
  the	
  
whole	
  hierarchy	
  
of	
  structure	
  
formation…	
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Figure 1. Comparison of the di⇥erent models used to calculate the enhancement of DM annihilation
signal due to structure formation; �2(z) based on the Millennium II simulation (MSII-models) [38]
and the semi-analytic model (BulSub) [23]. All the enhancement factors �2(z) are multiplied by the
factor (1 + z)3/h(z) in order to reflect the relevant part of the integrand in equation (2.1) we want to
illustrate.

gives significantly lower optical depth. For z � 1 the di⇥erence to the older model [69] is large
for gamma-ray energies E0 � 20 GeV, and for higher energies the di⇥erence is even larger and
their deviation start at much lower redshifts. We show that the choice of absorption model
plays a role for the DM limits when the limits are set by the gamma-ray spectrum in the high
energy end of the Fermi-LAT measurement. We comment further on this in sections 3 and 5.

2.2 Galactic

In addition to an extragalactic DM signal, there could be a significant contribution from
pair annihilations along the line of sight through the DM halo in which the Milky Way
is embedded. Current N-body simulations show highly galactocentric smooth DM density
profiles, extending far beyond the visible Galaxy, and with the main halo hosting a large
amount of substructures in form of subhalos (which themselves contain subhalos) [19, 31].

The Galactic main halo’s DM density profile would by itself, from an observer on Earth,
give rise to a very anisotropic DM annihilation signal.3 The DM annihilation signal from the
Galactic substructures, however, has a completely di⇥erent morphology and could potentially
produce a fully isotropic signal. This is because the flux is proportional to the number den-
sity distribution of subhalos, and this distribution is much less centrally concentrated than

3In [70] it was also argued that without, e.g., a substructure signal enhancements, the observation of the
inner degrees of the Milky Way is typically expected to always reveal a DM signal prior to a observed DM
gamma-ray signature in the IGRB measurment.
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The flattening of the concentration-mass relation and implications for the boosts 3
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Figure 1. Top panel: Current knowledge of the median concentration-mass relation at z = 0 for all halo masses available in the
literature from different simulation data sets, i.e. from the smallest Earth-like DM microhalos predicted to exist in the CDM universe
(∼10−6h−1M⊙), up to the largest cluster-size halos (∼1015h−1M⊙). At the high-mass end, the results from Bolshoi (blue circles) and
MultiDark (purple circles) are shown. The two empty black squares at ∼109h−1M⊙ and the three filled black squares at ∼108h−1M⊙

were derived from Ishiyama et al. (2013) and Coĺın et al. (2004), respectively. Another individual ”Draco-like 108h−1M⊙ halo is also
plotted as a green pentagon (Moore et al. 2001). A couple hundreds dwarf halos with masses ∼106 – 109 h−1M⊙ (red triangles) were
extracted from the VL-II data (Diemand et al. 2008). At the low-mass end, we show the microhalo results taken from Diemand et al.
(2005) (orange filled diamonds) and Anderhalden & Diemand (2013) (orange empty diamonds) for individual halos, as well as those
recently reported by Ishiyama (2014) for a sample of thousands of microhalos (empty black triangles). We also provide the upper limit
to halo concentrations obtained by Diemand et al. (2005) in the range 10−6 – 10 h−1M⊙ (pink dotted line). The P12 concentration
model (Prada et al. 2012) is shown with a solid line. The shaded gray region represents a typical 1σ concentration scatter of 0.14 dex
centered on the P12 model. The dashed curve represents the updated M08 version (Macciò, Dutton, & van den Bosch 2008) of the
B01 toy concentration model (Bullock et al. 2001). All concentration values but those from MultiDark, Bolshoi and VL-II, have been
extrapolated down to z = 0 by means of the (1 + z) correction factor. Bottom panel: Same data set but displayed in the c – σ−1 plane,
which allows for a more detailed analysis and comparison between simulations and model in terms of the amplitude of linear density
fluctuations. The concentration values shown are those in the original set of simulations at the corresponding redshift where they were
measured, while the σ(M) values are the ones that halos would have at present time for those values of the concentration, see text for
further details. Solid (dashed) line refers to the σ(M) range in which the P12 model was (not) tested against simulations.
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Figure 4. Same as Fig. 3 but for the limits defined in equations (8) and (10).

their properties. In fact, this is true as well for the typical ingredients
required by the HM approach, such as the mass function, the halo
profile, etc. However, the dependence on redshift of the uncertainty
in the determination of such quantities is not accounted for (instan-
taneous virialization and convergence to asymptotic universal halo
profile are for example assumed). Note however how the minimum
condition enforced via equation (6) prevents the error to grow too
much, with a moderating effect that is more pronounced at high z

and high k.
Figs 3 and 4 show as well, for comparison, the extrapolation of

the HF and RHF fitting formulas, together with the corrected ver-
sion of equation (2) enforcing the stable clustering prediction. Both
the extrapolated values of HF and RHF exceed the bounds derived
from the simulations. This is not surprising since, as mentioned
before, the large-k asymptotic behaviour has not been considered
in the fitting procedure. On the other hand, the stable clustering
assumption provides a ‘best guess’ extrapolation that nicely falls
within the estimated limits, both from MS and MSII, for all red-
shifts considered, even in the case of the tighter aggressive limits
of equations (8) and (10). This is evident as well confronting the
values obtained for ζ (z) with the allowed interval as reported in
Table 1. It is important to note that at the highest k resolved by the

MSII simulation, the MSII power spectrum does fall within the esti-
mated uncertainty band (blue/dark shadowed region) deduced from
MS data both in Figs 3 and 4. This is a further consistency check of
the physically reasonable behaviour of the uncertainty extrapolation
schemes proposed.

These results are visualized as well in Fig. 5 where the uncer-
tainty on the dimensionless combination (1 + z)3 ζ (z) H0/ H(z)
estimated from the extrapolated MS data (blue regions) and MSII
data (red regions) is shown as a function of redshift. Black curves
correspond to the RHF+SC prediction. Two different values for
the integration cut-off are considered, kmax = 106 and 108 h Mpc−1

(continuous and dashed curves, respectively). All extrapolations
assume k⋆ = k1 per cent. The left-hand panel assumes the more
conservative bounds of equations (5) and (6) while the right-hand
panel assumes equations (8) and (10). Clearly, the lower bounds
are not affected much by the two orders of magnitude difference in
the cut-off assumed here, while the upper bounds change by up to
about a factor of 10, depending on the redshift, in the conservative
extrapolation case. Notice that we limit the plots to the four outputs
available, z = 0, 1, 2 and 6 and that we have no upper bounds
estimated from MS at redshift z = 6, so we stop at z = 2. The es-
timated uncertainties obviously depend as well on the choice of k⋆,
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Figure 5. Examples of DM-produced gamma-ray spectra which are at the border of being excluded
by our 2� conservative limits. The WIMP mass and its annihilation channel is given in the upper left
corner of each panel. The normalizations of the extragalactic signal and of the Galactic substructure
signal are given by our benchmark HM model, as defined in section 2.1. Data points are in black,
and the black lines show the upper and lower envelopes of the systematic uncertainties defined as the
scatter among the di�erent IGRB spectra derived in ref. [8].

foreground models A, B and C in ref. [8]. With this exercise, we gauge the impact of some
systematic uncertainties associated with the modeling of the Galactic di�use emission. We
find di�erences that can be substantial especially for low WIMP masses; see appendix A for
further details. Yet, it should be noted that these tests are far from comprehensive and, as
such, might not address the full range of uncertainties.

The sensitivity reach derived here can also be taken as limits under the given assump-
tions. However, strictly speaking they should be interpreted as DM constraints only if the
astrophysical background was independently predicted to the spectrum of eq. (3.2) with
parameters equal to the best-fit values from the current IGRB measurement.

The case where the total contribution to the IGRB from conventional astrophysics is
derived as accurately as possible leads to DM constraints that typically lie between the
conservative limit and the sensitivity reach derived in this work. Indeed, this is what is
obtained in a companion work [96], where unresolved astrophysical source populations were
modeled and used to set new DM limits on DM annihilation cross sections.

In figures 5 and 6 we show illustrative examples of DM-induced spectra which have DM
annihilation cross sections at the size of our 95% CL exclusion limits by our conservative
approach and our sensitivity reach, respectively.
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Figure 6. Examples of DM-produced gamma-ray spectra which are at the border of being excluded
at 2⇥ level in our procedure to calculate the sensitivity reach of the IGRB data. The WIMP mass
and its annihilation channel is given in the upper left corner of each panel. The normalizations of the
extragalactic signal and of the Galactic substructure signal are given by our benchmark HM model,
as defined in section 2.1. Data points from ref. [8].

3.4 Limits on WIMP annihilation cross sections

In this work, we stay agnostic about the nature of the DM particle and consider generic models
in which DM annihilates with 100% branching ratio into bb̄, W+W�, ⇤+⇤� or µ+µ� channels.
For the first two channels, we consider only prompt emission and do not include any sec-
ondary gamma rays coming from the DM-induced electrons that up-scatter CMB photons by
IC. Even for the heaviest DM masses we consider, the prompt emission is soft enough here to
contribute significantly within the energy range of the measured IGRB — while the IC can be
ignored because it only induces emission at much lower energies where the IGRB flux is higher.
For ⇤+⇤� and µ+µ� channels, instead, the prompt emission is harder and peaks significantly
above the energy range for which the IGRB has been measured for our highest DM masses. In
these cases the IC (which is also harder than for the previous two channels) contributes signif-
icantly at energies close to the observed IGRB exponential cut-o� and thus must be included.
For that reason, both annihilation channels prove to be especially strongly constrained by
the IGRB measurement [12]. We calculate the DM annihilation prompt spectra using the
publicly available PPPC4DMID code [67], which takes into account electroweak bremsstrahlung
corrections, which are particularly relevant for heavy DM candidates. For the calculation of
the IC emission from the muon channel we follow the calculation presented in [12].

For the four annihilation channels under consideration, we present the conservative lim-
its and cross-section sensitivity reach at the 2⇥ confidence level in figures 7 and 8, respectively.
In all cases, the DM limits were obtained by adopting the cosmological DM annihilation in-
duced gamma-ray intensities given by the HM setup described in section 2.1, as well as a
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Figure 7. Upper limits (95% CL) on the DM annihilation cross section in our conservative procedure.
From top to bottom and left to right, the limits are for the bb̄, W+W�, ⇤+⇤� and µ+µ� channels. The
red solid line shows limits obtained in our fiducial HM scenario described in section 2.1, and assumes
the reference contribution from the Galactic subhalo population; see section 2.4 (‘HM, SS-REF’ case).
The broad red band labeled as ‘PS (min⇥max), SS-REF’ shows the theoretical uncertainty in the
extragalactic signal as given by the PS approach of section 2.2. The blue dashed line (‘HM, SS-MIN’),
with its corresponding uncertainty band (‘PS (min⇥max), SS-MIN’), refers instead to the limits
obtained when the Milky Way substructure signal strength is taken to its lowest value as calculated in
ref. [35]. For comparison, we also include other limits derived from observations with Fermi LAT [9, 11]
and imaging air Cherenkov telescopes [99, 100].

theoretical uncertainty range as estimated within the PS approach of section 2.2 (gray band
in figure 1). In addition, two configurations for the Galactic substructure contribution —
which is assumed to be isotropic in this work — are adopted: i) the reference case, labeled as
“SS-REF” in figures 7 and 8, where substructures boost the total Galactic annihilation signal
by a factor of 15, and ii) the minimal case, labeled “SS-MIN” in the figures, where the boost
from Galactic substructure is 3. Conservative DM limits and cross-section sensitivities at the
3⇥ level for the bb̄ and ⇤+⇤� channels were also derived, and can be found in appendix B.

From theoretical considerations, various DM particle candidate masses span a huge
range. For thermally produced WIMPs, however, the Lee-Weinberg limit restricts the mass
to be above few GeV [101] and unitarity considerations bound it to be below � 100TeV [102].
Interestingly, we are able to constrain signals for WIMP masses up to � 30TeV because the
IGRB measurement now extends up to 820GeV. For DM particle masses above � 30TeV,
we start to probe the low-energy tail of the DM spectra and thus we lose constraining power
rapidly. Furthermore, extragalactic WIMP signals are heavily suppressed at the highest
energies as the optical depth is very large for such gamma rays.
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Figure 8. DM annihilation cross section sensitivity reach (95% CL). Green solid line shows sensitivity
obtained in our fiducial HM scenario described in section 2.1, and assumes the reference contribution
from the Galactic subhalo population; see section 2.4 (‘HM, SS-REF’ case in the panels). The broad
green band labeled as ‘PS (min�max), SS-REF’ shows the theoretical uncertainty in the extragalactic
signal as given by the PS approach of section 2.2. The orange dashed line (‘HM, SS-MIN’), with
its corresponding uncertainty band (‘PS (min�max), SS-MIN’), refers instead to the cross-section
sensitivity obtained when the Milky Way substructure signal strength is taken to its lowest value as
calculated in ref. [35]. For comparison, we also include other limits derived from observations with
Fermi LAT [9, 11] and imaging air Cherenkov telescopes [99, 100].

It is interesting to compare the conservative limits of figure 7 to the cross-section sen-
sitivities in figure 8, at least for the case of our fiducial HM scenario and the reference
contribution from the Galactic subhalo population (‘HM, SS-REF’ case in the panels). For
the bb̄ (�+��) channel, the di�erences are of about factors 9, 25, 11, 3 (26, 9, 4, 3) at 10GeV,
100GeV, 1TeV, 10TeV.

For low WIMP masses, the full spectral shape of the IGRB is a�ected by the WIMP
signal, and hence the sensitivity reach, assuming a known spectral shape for the astrophysical
contributions to the IGRB, places stronger limits, whereas for the largest WIMP masses only
the last point(s) in the IGRB spectrum is a�ected and the two approaches are more similar.22

For the largest WIMP masses considered, the signal from Galactic substructures is
stronger than that from the extragalactic DM, with the e�ect that the uncertainty range of the
extragalactic WIMP signal becomes irrelevant when setting DM limits and calculating cross-

22If we omit the last data point, we find that both conservative limits and cross-section sensitivity for the
bb̄ channel worsen by �30% at 5TeV mass going up to a factor of � 2 for masses between 10 and 30TeV. In
the case of the harder �+�� channel, limits and sensitivity reach progressively weaken by a factor � 2 to 4
between 2 and 30TeV, respectively.
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Fig. 4.— Upper limits on the self-annihilation cross section for the bb̄ (top) and τ+τ−

(bottom) channels as derived in this work (see § 3) compared to the conservative and

sensitivity-reach limits reported in Ackermann et al. (2014c). The blue band reflects the
range of the theoretical predicted DM signal intensities, due to the uncertainties in the

description of DM subhalos in our Galaxy as well as other extragalactic halos, adopting a
cut-off minimal halo mass of 10−6M⊙. For comparison, limits reported in the literature are
also shown (Abramowski et al. 2011; Ackermann et al. 2014a; Aleksić et al. 2014).
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Fig. 3.— Top Panel: Integrated emission of blazars (with and without EBL absorption),
compared to the intensity of the EGB (datapoints from AC14). Lower Panel: as above,

but including also the emission from star-forming galaxies (gray band, Ackermann et al.
2012) and radio galaxies (black striped band, Inoue 2011) as well as the sum of all non-

exotic components (yellow band). An example of DM-induced γ-ray signal ruled out by
our analysis is shown by the solid pink line, and summed with the non-exotic components
(long-dashed pink line). The inset shows the residual emission, computed as the ratio of the

summed contribution to the EGB spectrum, as a function of energy as well as the uncertainty
due to the foreground emission models (see AC14).
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•  Goal:	
  to	
  use	
  the	
  new	
  LAT	
  IGRB	
  spectrum	
  up	
  to	
  820	
  GeV	
  to	
  set	
  DM	
  limits.	
  
	
  
-­‐  New	
  predictions	
  for	
  the	
  cosmological	
  DM	
  annihilation	
  signal.	
  

à Halo	
  Model	
  and	
  Power	
  Spectrum,	
  which	
  remarkably	
  agree.	
  
à Theoretical	
  uncertainty	
  now	
  a	
  factor	
  <20.	
  

	
  
-­‐  Two	
  sets	
  of	
  DM	
  limits:	
  

	
  à	
  Conservative	
  and	
  ‘sensitivity	
  reach’,	
  competitive	
  with	
  best	
  DM	
  limits.	
  
	
  à	
  Bracket	
  a	
  realistic	
  scenario	
  with	
  a	
  careful	
  modeling	
  of	
  astrophysical	
  

contributions	
  to	
  the	
  IGRB.	
  
	
  
•  15	
  years	
  of	
  LAT	
  data	
  will	
  improve	
  the	
  4.1	
  year	
  limits	
  by	
  a	
  factor	
  ~2	
  to	
  5.	
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We	
  compute	
  it	
  in	
  two	
  ways:	
  

1)  Halo	
  model	
  (HM):	
  implies	
  to	
  describe	
  the	
  internal	
  properties	
  of	
  individual	
  

halos	
  and	
  subhalos,	
  and	
  their	
  cosmic	
  evolution.	
  	
  

	
  à	
  OUR	
  BENCHMARK	
  MODEL	
  

2.   Non-­‐linear	
  matter	
  Power	
  Spectrum	
  (PS):	
  directly	
  measured	
  in	
  simulations.	
  	
  

	
  à	
  Good	
  to	
  study	
  uncertainties	
  (only	
  one	
  quantity	
  extrapolated)	
  

Disclaimer:	
  both	
  approaches	
  use	
  extrapolations	
  over	
  several	
  orders	
  of	
  magnitude	
  down	
  to	
  the	
  

smallest	
  predicted	
  mass	
  scales.	
  

Flux	
  multiplier:	
  approaches	
  



Halo mass 
function 

Halo masses  
and concentrations 

[MASC	
  &	
  Prada	
  2014]	
  

HALO	
  MODEL	
  (I):	
  bAsIcS	
  

2 Theoretical predictions for cosmological and89

isotropic dark matter annihilation signals90

The extragalactic gamma-ray flux d⌥/dE produced in annihilations of DM particles with
mass mDM and self-annihilation cross section ⇤⇧v⌅, over cosmological redshifts z is given
by1 [14, 15, 16]:

d⌥

dE0
=

c ⇤⇧v⌅(⇥DM⌅c)2

8⇤m2
DM

⇧
dz

e��(E0,z)(1 + z)3�(z)

H(z)

dN

dE

⇤⇤⇤
E=E0(1+z)

(1)

where c is the speed of light, ⇥DM is the current DM abundance relative to the critical91

density ⌅c, H(z) is the Hubble parameter or expansion rate, and dN/dE is the spectrum of92

photons per DM annihilation. The function ⌃(E, z) parametrizes the absorption of photons93

due to the extragalactic background light. The flux multiplier �(z), which is related to the94

variance of DM density fluctuations in the Universe and measures the amount of DM95

clustering at each given redshift, is the most uncertain quantity in this problem. It can be96

expressed both in real space, making use of the so called Halo Model (HM) approach [17],97

and in the Fourier space by means of the Power Spectrum (PS) approach [18].98

In the HM framework, �(z) is calculated by summing up the contributions to the
annihilation signal from individual halos of mass M from all cosmic redshifts, ⇤F (M, z)⌅,
and for all halo masses, i.e.:

�(z) =
1

⇥DM⌅c

⇧

Mmin

dM
dn

dM
M

�v(z)

3
⇤F (M, z)⌅ , (2)

where �v(z) is the mean halo over-density with respect to the mean density of the Universe
which is used to define the virial radius of the halo, Rv, at every redshift, and dn

dM is the
halo mass function. The latter is normalized by imposing that all mass in the Universe
resides inside halos (see [14] for more details). ⇤F (M, z)⌅ in turn depends on the DM halo
density profile and the halo size. Halo density profiles are measured in N-body cosmological
simulations, with the most recent results favoring cuspy NFW [19] and Einasto halos
[20, 21], while some astrophysical observations favor cored halos, e.g., Burkert density
profiles [22]. The density profile ⇥ can be easily expressed in terms of a dimensionless
variable x = r/rs, rs being the radius at which the e⇤ective logarithmic slope of the
profile is �2, or scale radius. In this prescription, Rv is usually parametrized by the halo
concentration cv = Rv/rs and the function F can be written as follows:

F (M, z, cv) ⇥ c3v(M, z)

⌅ cv
0 dx x2⇥2(x)

�⌅ cv
0 dx x2 ⇥(x)

⇥2 , (3)

More realistically F is an average over the probability distribution of the relevant param-99

eters (most notably cv). Note that the above expression depends on a third power of the100

concentration parameter. It is measured in simulations that the halo mass function and101

halo concentration are inversely proportional to halo mass and consequently the flux mul-102

tiplier �(z) given by Eq. (2) turns out to be dominated by small mass halos (as we will103

discuss in Section 2.1). It was observed in simulations that halos typically contain pop-104

ulations of subhalos, possibly characterized by di⇤erent mean values of parameters. The105

signals from subhalos is typically included by expanding Eq. 2, see [14].106

1We assume here that thermally averaged annihilation cross section is velocity independent and that
DM are self conjugated particles.
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Figure 1. Top panel: Current knowledge of the median concentration-mass relation at z = 0 for all halo masses available in the
literature from different simulation data sets, i.e. from the smallest Earth-like DM microhalos predicted to exist in the CDM universe
(∼10−6h−1M⊙), up to the largest cluster-size halos (∼1015h−1M⊙). At the high-mass end, the results from Bolshoi (blue circles) and
MultiDark (purple circles) are shown. The two empty black squares at ∼109h−1M⊙ and the three filled black squares at ∼108h−1M⊙

were derived from Ishiyama et al. (2013) and Coĺın et al. (2004), respectively. Another individual ”Draco-like 108h−1M⊙ halo is also
plotted as a green pentagon (Moore et al. 2001). A couple hundreds dwarf halos with masses ∼106 – 109 h−1M⊙ (red triangles) were
extracted from the VL-II data (Diemand et al. 2008). At the low-mass end, we show the microhalo results taken from Diemand et al.
(2005) (orange filled diamonds) and Anderhalden & Diemand (2013) (orange empty diamonds) for individual halos, as well as those
recently reported by Ishiyama (2014) for a sample of thousands of microhalos (empty black triangles). We also provide the upper limit
to halo concentrations obtained by Diemand et al. (2005) in the range 10−6 – 10 h−1M⊙ (pink dotted line). The P12 concentration
model (Prada et al. 2012) is shown with a solid line. The shaded gray region represents a typical 1σ concentration scatter of 0.14 dex
centered on the P12 model. The dashed curve represents the updated M08 version (Macciò, Dutton, & van den Bosch 2008) of the
B01 toy concentration model (Bullock et al. 2001). All concentration values but those from MultiDark, Bolshoi and VL-II, have been
extrapolated down to z = 0 by means of the (1 + z) correction factor. Bottom panel: Same data set but displayed in the c – σ−1 plane,
which allows for a more detailed analysis and comparison between simulations and model in terms of the amplitude of linear density
fluctuations. The concentration values shown are those in the original set of simulations at the corresponding redshift where they were
measured, while the σ(M) values are the ones that halos would have at present time for those values of the concentration, see text for
further details. Solid (dashed) line refers to the σ(M) range in which the P12 model was (not) tested against simulations.
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Figure 2. Left panel: Halo substructure boosts as a function of host halo mass obtained with the P12 c(M) model, for different values
of minimum subhalo mass, Mmin, and slope of the subhalo mass function, α. From bottom to top, the different lines correspond to
(Mmin, α) = (10−6M⊙, 1.9), (10−12M⊙, 1.9), (10−6M⊙, 2), (10−12M⊙, 2). The solid line corresponds to our fiducial boost model, i.e.,
Mmin =10−6M⊙ and α = 2. Right panel: Comparison between the substructure boosts given by our fiducial boost model (solid line),
and that computed by Sánchez-Conde et al. (2011) and Gao et al. (2012) (dashed and dotted lines, respectively).

signal would imply B = 0, while a value of B = 1 would
mean that substructures contribute to the annihilation lu-
minosity at the same level than the parent halo. We show in
Fig. 2 the results of computing the substructure boost with
Eq.(2) and using the c(M) parametrization given in Eq.(1)
for the P12 model. We adopt Mmin = 10−6M⊙ and α = 2
for our fiducial substructure boost model7, but we also show
the result of varying these parameters in the left panel of
Fig. 2. In our computation of the substructure boosts, only
the first two levels of substructure were included, i.e., subha-
los and sub-subhalos, since according to our checks the third
substructure level contributes only less than 5% to the total
boost in most cases (reaching ∼8% in the most extreme case
adopting Mmin = 10−12M⊙ and α = 2). The marginal rele-
vance of level 3 was already pointed out by Mart́ınez et al.
(2009), who analytically predicted a ∼2% signal increase
from level 3 and beyond. We note that we find slightly higher
contributions from this level though. Level 2, however, can
contribute up to one third of the boost value given in our
fiducial model for the largest halo masses.

The right panel compares our fiducial boosts with
those previously derived by Sánchez-Conde et al. (2011) and
Gao et al. (2012). As it can be clearly seen, the boosts
yielded by the P12 model qualitatively agree with previous
estimates that also used physically motivated c(M) mod-
els well below the mass resolution limits of N-body cosmo-
logical simulations (Lavalle et al. 2008; Kuhlen et al. 2008;
Pieri et al. 2008; Mart́ınez et al. 2009; Kamionkowski et al.
2010; Charbonnier et al. 2011; Sánchez-Conde et al. 2011;
Kuhlen, Vogelsberger, & Angulo 2012; Nezri et al. 2012;
Anderhalden & Diemand 2013; Zavala & Afshordi 2013).

7 The choice of α = 2 for our fiducial model is motivated
by theoretical expectations in the Press-Schechter theory for
structure formation, see e.g. Giocoli, Pieri, & Tormen (2008);
Blanchet & Lavalle (2012).

These are, however, in clear contradiction with that found
in works that implicitly adopted a power-law c(M) ex-
trapolation to lower masses, e.g., Springel et al. (2008);
Zavala, Springel, & Boylan-Kolchin (2010); Pinzke et al.
(2011); Gao et al. (2012). For Milky Way-size halos, our
fiducial substructure boost model yields a boost of ∼15 ver-
sus ∼77 in the model by Gao et al. (2012). The difference is
even more pronounced for larger halos, as expected. For a
rich 1015M⊙ galaxy cluster, for instance, we obtain a boost
of ∼35, while Gao et al. (2012) estimated ∼1100, i.e. about
1.5 orders of magnitude larger! This disagreement would
have been even larger if we had compared both approaches
for Mmin = 10−12M⊙ instead of 10−6M⊙: our boosts do not
change drastically by including smaller substructures, while
power-law-based substructure models are very sensitive to
the adopted value of Mmin. On the other hand, note that
we do expect a substantial flux increase of a factor of a few
due to DM substructure in dwarf galaxies. We recall, how-
ever, that strictly speaking our results are only applicable to
field halos; for the dwarf galaxies satellites of the Milky Way,
for example, tidal stripping may have removed most of the
substructure in the outer regions of these objects – where
subhalos typically reside – in this way significantly decreas-
ing this substructure boost value.8 This decrease may be
compensated though by the fact that subhalos are known to
exhibit larger concentrations compared to that of field ha-
los (Diemand et al. 2008). We conclude that the final boost
value for these objects is not clear at the moment and should
be addressed in future work, our results in Fig. 2 represent-
ing a first order estimate.

Finally, we provide a simple parameterization for the
substructure boost factors implied by the P12 concentra-

8 Actually, sub-subhalo abundance is found to be reduced con-
siderably compared to subhalo abundance (at a fixed mass), see
e.g. Figs. (16) and (17) in Springel et al. (2008).

c⃝ 2002 RAS, MNRAS 000, 1–??
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POWER	
  SPECTRUM	
  APPROACH	
  As noted in [23] the flux multiplier can also be expressed directly in terms of the non-
linear matter power spectrum PNL (the two-point function of the Fourier transform of the
matter density field):

⇥(z) � ⌅�2(z)⇧ =
� kmax d k

k

k3PNL(k, z)

2⇤2
�

� kmax d k

k
�NL(k, z), (4)

where �NL(k, z) = k3PNL(k)/(2⇤2) is the dimensionless nonlinear power spectrum and107

kmax(z) is the scale of the smallest structures which still significantly contribute the cos-108

mological annihilation signal. Loosely speaking, M = 4/3 ⇤⌅h (⇤/k)3 with ⌅h the charac-109

teristic density of the DM halo. Therefore kmax is the PS correspondence to minimal halo110

mass Mmin in Eq. (2) in a HM prescription.111

The extrapolation to mass or k scales beyond the resolution of N-body simulations is112

the source of the biggest uncertainty in the prediction of the extragalactic signal of DM113

annihilation, since the smallest scales expected for the WIMP models are far from being114

probed either by astrophysical observations or simulations. Thus, the way these extrapo-115

lations to the smallest masses are performed can lead to completely di⇥erent results of the116

relevant quantities. Typical expectations for the minimum halo masses in WIMP models117

are in the range Mmin ⇤ [10�9, 10�4]M⇥ (see [24, 25, 26] and refs. therein), while we only118

have observational evidence of structures down to 107 M⇥ [27] implying that extrapolations119

of at least >⇥ 10 orders of magnitude in halo mass (or >⇥ 3 orders of magnitude in k) are120

probably needed.121

Both ways of expressing ⇥, (2) and (4) have their advantages and disadvantages. While122

(2) is given in real space and thus deals with ‘intuitive’ quantities, it depends to a large123

extent on several poorly constrained parameters, most notably concentration and halo mass124

function. This is particularly true for the smallest halos, which, as said, are expected to125

dominate. The same is applicable to the subhalo population, whose internal properties126

and abundance are even less understood. On the other hand, (4) depends only on one127

quantity directly measured in simulations2 and can be extrapolated based on simple scale128

invariant arguments, but lacks the intuitive understanding of breaking the structure down129

to individual halos and subhalos, relevant e.g. when comparing the expected signals from130

Milky Way substructures with the total cosmological one.131

In this work, we will use both of these two approaches in parallel: the HM to define132

our benchmark model following simple but well motivated arguments for the choice of the133

relevant ingredients, and the PS framework to calculate the associated uncertainty due134

to extrapolation to small (unresolved) scales (since in this case the extrapolation simply135

a⇥ects one quantity which is unambiguously defined and measured in simulations).136

2It is measured using only a matter density map, without invoking concept of halos and without relying
on standard halo finders.
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Figure 4. Same as Fig. 3 but for the limits defined in equations (8) and (10).

their properties. In fact, this is true as well for the typical ingredients
required by the HM approach, such as the mass function, the halo
profile, etc. However, the dependence on redshift of the uncertainty
in the determination of such quantities is not accounted for (instan-
taneous virialization and convergence to asymptotic universal halo
profile are for example assumed). Note however how the minimum
condition enforced via equation (6) prevents the error to grow too
much, with a moderating effect that is more pronounced at high z

and high k.
Figs 3 and 4 show as well, for comparison, the extrapolation of

the HF and RHF fitting formulas, together with the corrected ver-
sion of equation (2) enforcing the stable clustering prediction. Both
the extrapolated values of HF and RHF exceed the bounds derived
from the simulations. This is not surprising since, as mentioned
before, the large-k asymptotic behaviour has not been considered
in the fitting procedure. On the other hand, the stable clustering
assumption provides a ‘best guess’ extrapolation that nicely falls
within the estimated limits, both from MS and MSII, for all red-
shifts considered, even in the case of the tighter aggressive limits
of equations (8) and (10). This is evident as well confronting the
values obtained for ζ (z) with the allowed interval as reported in
Table 1. It is important to note that at the highest k resolved by the

MSII simulation, the MSII power spectrum does fall within the esti-
mated uncertainty band (blue/dark shadowed region) deduced from
MS data both in Figs 3 and 4. This is a further consistency check of
the physically reasonable behaviour of the uncertainty extrapolation
schemes proposed.

These results are visualized as well in Fig. 5 where the uncer-
tainty on the dimensionless combination (1 + z)3 ζ (z) H0/ H(z)
estimated from the extrapolated MS data (blue regions) and MSII
data (red regions) is shown as a function of redshift. Black curves
correspond to the RHF+SC prediction. Two different values for
the integration cut-off are considered, kmax = 106 and 108 h Mpc−1

(continuous and dashed curves, respectively). All extrapolations
assume k⋆ = k1 per cent. The left-hand panel assumes the more
conservative bounds of equations (5) and (6) while the right-hand
panel assumes equations (8) and (10). Clearly, the lower bounds
are not affected much by the two orders of magnitude difference in
the cut-off assumed here, while the upper bounds change by up to
about a factor of 10, depending on the redshift, in the conservative
extrapolation case. Notice that we limit the plots to the four outputs
available, z = 0, 1, 2 and 6 and that we have no upper bounds
estimated from MS at redshift z = 6, so we stop at z = 2. The es-
timated uncertainties obviously depend as well on the choice of k⋆,
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Figure 1. Normalized ⇥ as a function of redshift. A value of Mmin = 10�6 h�1M⇥ was
used in both the PS (gray) and HM predictions (red). The benchmark HM model detailed
in section 2.1 is shown by the red solid line. The red dashed line corresponds to the case in
which the slope of the subhalo mass function varies from the fiducial � = 2 to 1.9 (i.e., less
substructure). The dotted line, labeled ‘PS (min)’, shows the minimum approximation from
Equation 2.5 in the PS approach, while the dashed line, ‘PS (max)’, shows the maximum
approximation given by Equation 2.6.

contributions down to length scales � ⇤/kmax. In the HM approach, by contrast, the
substructures’ contribution is calculated by introducing additional parameters. We
show in figure 1 the HM prediction for two di�erent scenarios: the ones correspond-
ing to the minimum and maximum allowed values of the (substructure-induced) boost
factor to the annihilation signal from field halos as predicted in ref. [33] for a fixed
value of Mmin,ss = 10�6 h�1M⇥. In this case, the di�erences in boost factors are due
to di�erent assumptions for the slope of the subhalo mass function, � (larger � val-
ues lead to more substructure and thus to larger boosts). As a consequence of the
aforementioned limitations, we expect some uncertainty when making a quantitative
comparison between the HM and PS approaches. Nevertheless, the agreement is quite
good as can be seen in figure 1, our benchmark HM prediction being within the mini-
mum and maximum PS values at all redshifts. We have so far explored the expected

WIMP signal for a given assumed cut-o� scale Mmin (or, equivalently, kmax(z) defined
by ⇤/rs). However, this e�ective cut-o� scale can vary significantly between various
DM candidates, depending for example on their free-streaming lengths, as discussed
in, e.g., [27]. In figure 2 we explore this dependence of ⇥ on the cut-o� scale Mmin and
kmax(z).
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PRELIMINARY 
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  MASC	
  &	
  Prada	
  (2014),	
  we	
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  Galactic	
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  scenarios:	
  
	
  	
  
	
  1.	
  Annihilation	
  boost	
  of	
  a	
  factor	
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  factor	
  15	
  (Benchmark	
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  Mmin=10-­‐6	
  Msun,	
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  different	
  slopes	
  of	
  the	
  subhalo	
  mass	
  function)	
  
	
  

Figure 4. Anisotropy in the gamma-ray annihilation signal from the subhalo distribution
found in Aquarius [40] (left) and Via Lactea II [39] (right) simulations, with the former
following the prescription in ref. [63]. The plots show the intensities of the substructures
relative to their average intensity in the |b| > 20⇤ region.

our Galactic DM halo by factors of 3 and 15. This range follows from the prescription
of [33] using a fixed minimum subhalo mass of Mmin,ss = 10�6 h�1M⇥ but varying the
slope of the subhalo mass function (� = 1.9 and 2, respectively). In the next section, we
will show limits on DM annihilation cross sections from assuming these two bracketing
values on the substructure boost. Changing Mmin,ss to, e.g., 10�12 h�1M⇥ would not
a�ect the lower boost factor, but would increase the upper boost factor bound from
15 to about 40 (see ref. [33]).

Some of the largest or closest Galactic DM substructures could eventually be re-
solved as discrete gamma-ray sources. The contribution from few individual subhalos to
the total isotropic WIMP signal is not substantial, but nonetheless current constraints
on DM signals from dwarf spheroidal galaxies [10], as well as the non-detection of
DM signals from unassociated gamma-ray sources, e.g., [64–66], significantly limit the
total annihilation signal from the DM subhalos in the Milky Way. Our approach is
to include the total expected DM signals from all subhalos of all masses in our eval-
uation of the DM signal contribution to the IGRB, but when DM limits from, e.g.,
dwarf spheroidal galaxies are stronger they obviously also impose limits on the total
expected Galactic DM substructures contribution to the IGRB. Yet in these cases our
limits are still relevant, as they represent an independent probe of cross sections by
means of a conceptually di�erent approach.

While the gamma-ray signal originating from Galactic substructure could appear
reasonably isotropic, an important di�erence with the extragalactic signal is in the
spectral shape: the extragalactic signal is redshifted and distorted by absorption on
the EBL (c.f. eq. (2.1)) while the Galactic signal directly reflects the injection spec-
trum of gamma rays from DM annihilations and is generally harder. For that reason
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Figure 9. Left: The new IGRB measurement, after the inclusion of the Galactic smooth
DM template, when the measurement for some energy bins falls outside twice the systematic
uncertainty band, defined as the scatter among the di�erent IGRB spectra derived in ref. [8]
(the case to be compared with our conservative limits). Right: The modified IGRB, after
the inclusion of the DM template, when the measurement for some energy bins falls outside
two times the 1� statistical error band of the IGRB measurement originally presented in
ref. [8] (to be compared with our calculation of the sensitivity reach). A 5 TeV WIMP
which annihilates promptly into bb̄ was used in both panels, which also explains why the
maximum di�erences between the original and modified IGRB are found around 200 GeV in
these particular examples. Note that we do not show the statistical error bar of the modified
IGRB because it is not relevant for our determination of the modified IGRB.

tially start to appear in the IGRB measurement. In figure 9, we show two examples of
a changed IGRB spectrum for the two cases mentioned above in the case of a 1 TeV
WIMP annihilating into bb̄.

Figure 10 shows the largest possible DM annihilation cross sections to the bb̄ and
�+�� channels which do not change the IGRB spectrum, together with our conservative
limits on the cross section and sensitivity reach derived in section 3.25 The non-gray-
shaded areas in figure 10 roughly indicate the regions where our method of deriving
limits on an isotropic DM signal would not lead to significantly altered results due to
the modified IGRB measurement from the presence of the assumed smooth Galactic
DM signal.

Notably, there are regions of the parameter space where DM limits overlap with
the shaded areas of our conservative limits in figure 10. Inclusion of the Galactic
smooth DM template can lead to both smaller and larger IGRB intensities around
the DM signal peak than the one reported in ref. [8]. For some DM masses <� 250
GeV the IGRB can e.g. get higher by up to � 40% after the inclusion of the DM
template, which would naively weaken the limits by roughly this amount. For larger
DM mass (>� 1 TeV) the IGRB spectrum is typically lowered. This is a consequence
of our procedure in which the normalizations of the Galactic foreground spectra are

25Only model A is used in the figure, but we note that similar results are obtained with models B
and C.
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Figure 10. The gray regions above the dotted lines indicate the DM annihilations cross sections
which would alter the measured IGRB spectra significantly due to the signal from smooth DM halo
component of the Milky Way; see section 4. Top and bottom panels are for bb̄ and �+�� channels,
respectively. The DM limits shown are the same as those presented in figure 7 (left panels) and
figure 8 (right panels).

derived under the assumptions that a Galactic DM signal is present. These alternate IGRB
models are derived as above, with the Galactic DM signal fixed by the annihilation channel
and cross section (the DM density profile is kept to the same as before). We adopt the cross-
section values at the upper edge of the orange band in the top right panel of figure 10 (the
‘PS(min), SS-MIN’ case) and then apply our procedure to find the sensitivity reach: we find
that the cross-section sensitivity curve is basically unchanged by the inclusion of the Galactic
DM component. For cross sections within the gray shaded area the IGRB is sometimes no
longer described well by the adopted background model, so the method is no longer expected
to behave well.

Note that while our DM limits depend on the substructure signal strength and the
assumed minimal DM halo mass, the shaded gray region in figure 10 is independent of it, so
the relative position of the gray region and the limits would be di�erent for a di�erent choice
of these parameters.

In order to exhaustively explore the impact of Galactic smooth DM templates on the
derivation of the IGRB, a larger number of Galactic astrophysical emission models should
be studied. In this way it would be possible to probe in detail the IGRB along with various
Galactic DM signals. However, such studies are beyond the scope of this work, which is
tied to the methodology used in ref. [8]. The initial study performed in this section shows
the importance of including the Galactic DM annihilation with its proper morphology in a
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