Resolving the Hadronic Accelerator IC 443:
A Joint Study with Fermi-LAT and VERITAS

J.W. Hewitt (Univ. of North Florida)
E.A. Hays, J. Schmid, H. Tajima,
on behalf of the Fermi LAT
and VERITAS collaborations

6th Fermi Symposium, Nov. 11, 2015
IC 443: Interacting with a Multi-Phase ISM

- Evolved (radiative) SNR interacting with a molecular cloud

WISE 3-color IR image of shocked dust

Radio 20cm

Schematic of IC 443 from Lee, et al. (2008)
IC 443: Prominent γ-ray Supernova Remnant

- GeV γ rays detected by EGRET in 90’s. TeV γ rays detected by MAGIC, VERITAS
- Spatially extended in GeV/TeV γ rays
- Later AGILE, Fermi-LAT detect π⁰ bump (e.g. Abdo, et al. 2012)

(Note: Images always oriented in J2000)
Our Improving γ ray Views

Fermi LAT 2010: 13 mos. P6V3 data
VERITAS 2007: 38hrs

VERITAS 2007: 38hrs → 2015: 178hrs + PMT upgrade, T1 move

IC 443 is resolved as a γ-ray shell SNR

Counts Map >5 GeV (PSF23)
Significance Map
Utilizing PSF Event Types in Pass 8

LAT morphology compared to **TeV** - **VERITAS** contours at 3, 6, 9, 12 \(\sigma\)

Counts Map >5 GeV (PSF23)

See Sajan Kumar’s poster (SNR 5) for **VERITAS** details
Utilizing PSF Event Types in Pass 8

LAT morphology compared to TeV, **radio** - 327 MHz continuum

Counts Map >5 GeV (PSF23)
Utilizing PSF Event Types in Pass 8

LAT morphology compared to TeV, radio, ambient CO

Counts Map >5 GeV (PSF23)
Utilizing PSF Event Types in Pass 8

LAT morphology compared to TeV, radio, ambient CO, shocked HCO+

Counts Map >5 GeV (PSF23)
Multi-wavelength comparison shows the GeV/TeV γ rays match the distribution of shocked gas in IC 443

LAT morphology compared to TeV, radio, ambient CO, shocked HCO+

Counts Map >5 GeV (PSF23) ~$10^4 M_{\odot}$ of shocked gas along southern ridge (Lee, et al. 2008)
• Multi-wavelength comparison shows the GeV/TeV γ rays match the distribution of shocked gas in IC 443

LAT morphology compared to TeV, radio, ambient CO, shocked HCO+ shocked atomic gas in North?

HI absorption $\rightarrow 40\pm4$ M$_{\odot}$
(Castelletti, et al. 2011)

H$^+$ gas has $n_e=10$-1000 cm$^{-3}$
(Rho, et al. 2001)
• Lucy-Richardson deconvolution with wavelet denoising enhances spatial structures (as done previously with W44; Abdo et al. 2010)

Deconvolved 1–300 GeV events. Pass 8 gives 2.4x statistics of P7REP with cut on PSF68 < 0.4°

• Deconvolved LAT image is used as an extended spatial template to isolate different emission regions

see arXiv:0705.1362
• Lucy-Richardson deconvolution with wavelet denoising enhances spatial structures (as done previously with W44; Abdo et al. 2010)

Deconvolved 1–300 GeV events. Pass 8 gives 2.4x statistics of P7REP with cut on PSF68 < 0.4°

• Deconvolved LAT image is used as an extended spatial template to isolate different emission regions

see arXiv:0705.1362
Exploring 4 Distinct Regions

Extract spectra from distinct regions using 4 spatial templates for LAT / circular apertures for VERITAS
Exploring 4 Distinct Regions

Region 1

Region 2

PRELIMINARY
Exploring 4 Distinct Regions

Region 1

Region 2

Region 3

PRELIMINARY

Graph showing energy distribution with energy on the x-axis and $E^2 dN/dE$ on the y-axis.
Exploring 4 Distinct Regions

Region 1
Region 2
Region 3
Region 4

PRELIMINARY

$E^{-2} \, dN/dE \, [\text{erg cm}^{-2} \, \text{s}^{-1}]$

Energy [MeV]

10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3}
Exploring 4 Distinct Regions

- No clear differences in spectral shape for distinct emission regions (e.g. dense cloud in region 1 vs. fast atomic shock in region 4)

Broken PL fits for all 4 regions:
\(\Gamma_1 \sim 2.3, \Gamma_2 \sim 2.9, E_b \sim 60 \text{ GeV} \)

Note: Uncertainties in the absolute flux calibration between Fermi LAT and VERITAS are NOT considered here
Comparing Regions: GeV vs TeV fluxes

- TeV/GeV integral flux ratios are consistent within errors between all 4 regions, despite ~10x change in brightness

$E^2 \frac{dN}{dE} \text{[erg cm}^{-2} \text{s}^{-1}]$ flux ratios of the 1-200 GeV and 0.2-6 TeV energy ranges
Comparing Regions: GeV flux vs Gas Mass

- Ratio of flux to gas mass shows significant differences between the dense molecular (1,2,3) and diffuse atomic (4) regions

\[M_Y \sim 2,500 \ M_{\odot} \] can explain \(\zeta_{CR} \sim 2 \times 10^{-15} \) from \(\text{H}_3^+ \) (Indriolo, et al. 2008)
• *Fermi* LAT Pass 8 data resolves γ-ray shell from IC 443 in agreement with deep VERITAS observations

• Able to resolve γ-ray emission zones on ~5 pc scales in IC 443

• GeV/TeV correspondence with shock interaction gas density

• Spectra of all 4 regions show consistency with same broken power law

• *Data are still statistics limited…*
Backup Slides
Fermi LAT extension fit in 6 distinct energy bins from 0.3-1,000 GeV
Two nearby molecular clouds

- Foreground molecular cloud cuts across SNR. RGB image shows $v_{\text{LSR}} = -2, -4, -6$ km/s against Radio contours

- +5 km/s cloud ends at TeV peak

![Image 1: Foreground molecular cloud cuts across SNR.](image1)

![Image 2: +5 km/s cloud ends at TeV peak.](image2)

Figure 15. Far-IR 90 μm image taken with the AKARI satellite shown in gray scale. The green contours show the distribution of +5 km s$^{-1}$ clouds (the gray scale in Figure 9). The blue contours show locations of SCs. The solid and dashed circles represent the location of γ-ray sources detected by MAGIC and VERITAS, respectively.

Figures from Lee+ 2008
Image Restoration Technique

Richardson-Lucy Deconvolution Algorithm

- When we observe an event at position \(x \)
 - \(P(x: \xi) \): probability that it came from a “true” position \(\xi \) due to instrument response

\[
\psi^{r+1}(\xi) = \int \tilde{\phi}(x) \frac{\psi^r(\xi)P(x: \xi)}{\int P(x: \zeta)\psi^r(\zeta)d\zeta} dx
\]

Lucy 1974
Richardson 1974

Generalization to Event-by-event \(P_k(x: \xi) \)

\[
\psi^{r+1}(\xi) = \frac{1}{N} \psi^r(\xi) \sum_{k=1}^{N} \frac{P_k(x_k: \xi)}{\int P_k(x_k: \zeta)\psi^r(\zeta)d\zeta}
\]

- Can be used for event-by-event data with varying PSF.
- No energy spectrum assumption necessary

- Point sources can be incorporated using dual-channel method

\[
\psi = \psi_{\text{point}} + \psi_{\text{extended}}
\]

Hook&Lucy 1994
Wavelet Denoising

- Minimize the effect of Poisson noise
 » Wavelet filtering technique

\[\psi_n \rightarrow \phi^n = P \psi^n \rightarrow R^n \rightarrow \text{FILTER} \rightarrow R'^n \rightarrow \phi' \rightarrow \text{RL} \rightarrow \psi^{n+1} \]

\[\phi \]: observed image
\[R^n = \phi - \phi^n, \quad \phi' = R'^n + \phi^n \]

\[\psi = \sum_{j=0}^{n} w_j + c_n \]

Starck&Murtagh 1994