

Understanding the Prompt Emission of GRB 170817A

Binbin Zhang Nanjing University

Outline

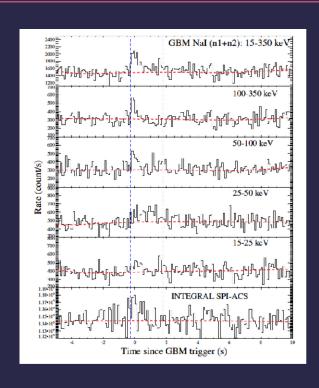
- **1** Event Rates
- **2** Ejecta Topology
- **3** Radiation Mechanism

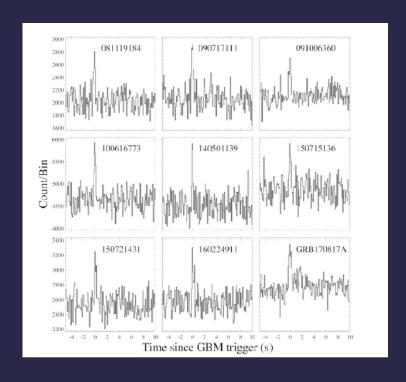
4 1.7 s Time Delay

Event Rates

Ejecta Topology

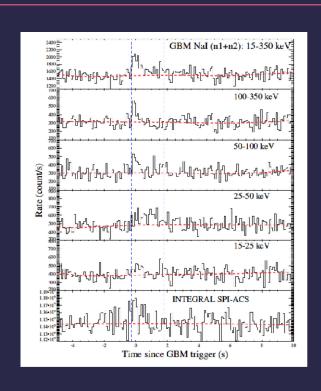
Radiation Mechanism

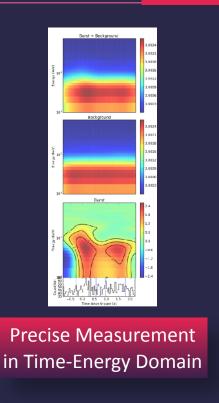

4 1.7 s Time Delay

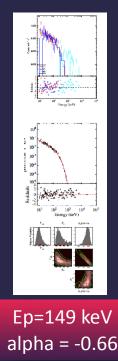


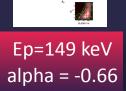
1 Event Rates

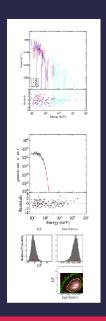
2 1.7 s Time Delay


Short: 2s; Slightly weak


light curve : unnoticeable, perfectly normal


Zhang, B.-B. et al 2018, Goldstein et al 2017

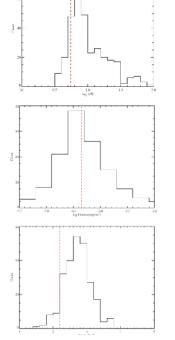

see also Eric's talk, Burn et al 2018

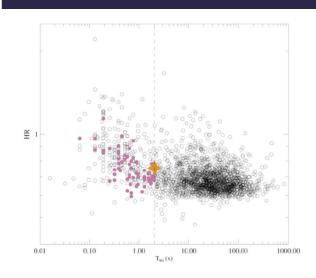


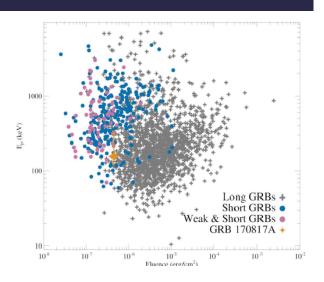
kT= 10.8 keV

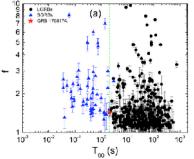
Short: 2s; Slightly weak

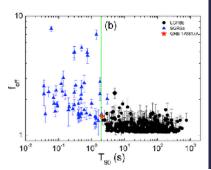
Two Episodes: Seemingly different spectra

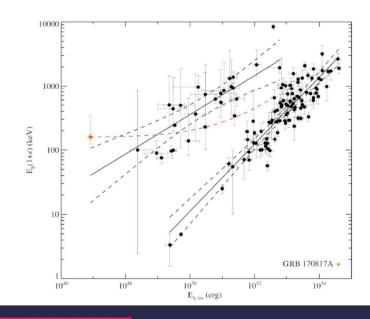



total spanning duration (s) spectral peak energy (first peak) E_p (keV) total fluence (erg cm⁻²) spectral lag (25-50 keV vs 50-100 keV)


 $\begin{array}{c} \sim 2.05 \\ 149.1^{+229.4}_{-24.2} \\ 2.24^{+3.51}_{-0.53} \times 10^{-7} \\ 0.03 \pm 0.05 \text{ s} \end{array}$




"Perfectly Normal"



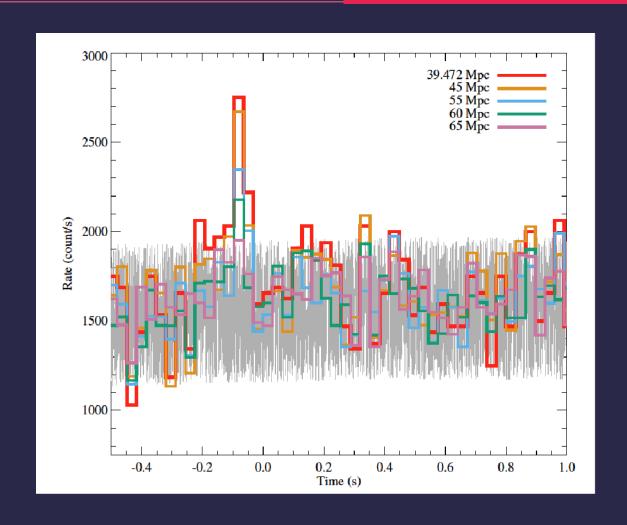
	total spanning duration (s)	~ 2.05			
5	spectral peak energy (first peak) E_p (keV)	$149.1^{+229.4}_{-24.2}$			
	total fluence (erg cm^{-2})	$2.24^{+3.51}_{-0.53} \times 10^{-7}$			
	spectral lag (25-50 keV vs $50-100 \text{ keV}$)	$0.03 \pm 0.05 \text{ s}$			
	$\operatorname{redshift}z$	~ 0.009			
	luminosity distance $D_{\rm L}$ (Mpc)	39.472			
	total isotropic energy $E_{\rm iso}$ (erg)	$4.17^{+6.54}_{-0.99} \times 10^{46}$			
	peak luminosity $L_{\rm iso}~({\rm erg~s^{-1}})$	$1.6^{+2.5}_{-0.4} \times 10^{47}$			

Physically Special
Observationally Rare (only one case)
Statistically Indicative (e.g, Event Rate)

Event Rate — GRB Rate from Fermi/GBM

$$N_{\rm sGRB} = \frac{\Omega_{\rm GBM} T_{\rm GBM}}{4\pi} \rho_{0,{\rm sGRB}} V_{\rm max} \geq 1$$

$$T_{\mathrm{GBM}}$$



$$V_{
m max} = 4\pi D_{
m L,max}^3/3$$
. $D_{
m L,max} \sim 65$ Mpc ,

$$D_{
m L,max}$$
 ~ 65 N

$$\rho_{0,\text{sGRB}}(L_{\text{iso}} > 1.7 \times 10^{47} \text{erg s}^{-1}) \ge 190^{+440}_{-160} \text{ Gpc}^{-3} \text{ yr}^{-1}$$

Zhang, B.-B. et al 2018, Nature Communications, 9, 447

Event Rate — GRB Rate from Fermi/GBM

$$N_{\rm sGRB} = \frac{\Omega_{\rm GBM} T_{\rm GBM}}{4\pi} \rho_{0,{\rm sGRB}} V_{\rm max} \geq 1$$

$$T_{\mathrm{GBM}}$$

$$V_{
m max} = 4\pi D_{
m L,max}^3/3$$
. $D_{
m L,max} \sim 65$ Mpc ,

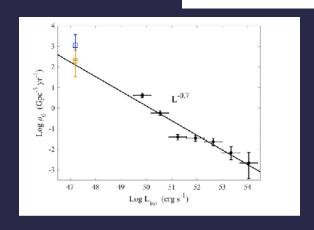
$$D_{
m L,max}$$
 ~ 65 N

$$\rho_{0,\text{sGRB}}(L_{\text{iso}} > 1.7 \times 10^{47} \text{erg s}^{-1}) \ge 190^{+440}_{-160} \text{ Gpc}^{-3} \text{ yr}^{-1}$$

Event Rate — NS-NS Merge Rate from LIGO

$$N_{\rm NS-NS} = \frac{\Omega_{\rm LVC}}{4\pi} \rho_{0,\rm NS-NS} (V_{\rm max,O1} T_{\rm O1} + V_{\rm max,O2} T_{\rm O2}) = 1.$$

Noticing $\Omega = 4\pi$ for GW detectors, taking NS-NS merger horizon ~ 60 Mpc and ~ 80 Mpc for O1 and O2, respectively, and adopting a duty cycle of $\sim 40\%$ for both O1 and O2, we estimate


$$\rho_{0,NS-NS} = 1100^{+2500}_{-910} \text{ Gpc}^{-3} \text{ yr}^{-1}.$$

Event Rate — Much More Promising than Previous Thought

$$\rho_{0,\text{sGRB}}(L_{\text{iso}} > 1.7 \times 10^{47} \text{erg s}^{-1}) \ge 190^{+440}_{-160} \text{ Gpc}^{-3} \text{ yr}^{-1}.$$

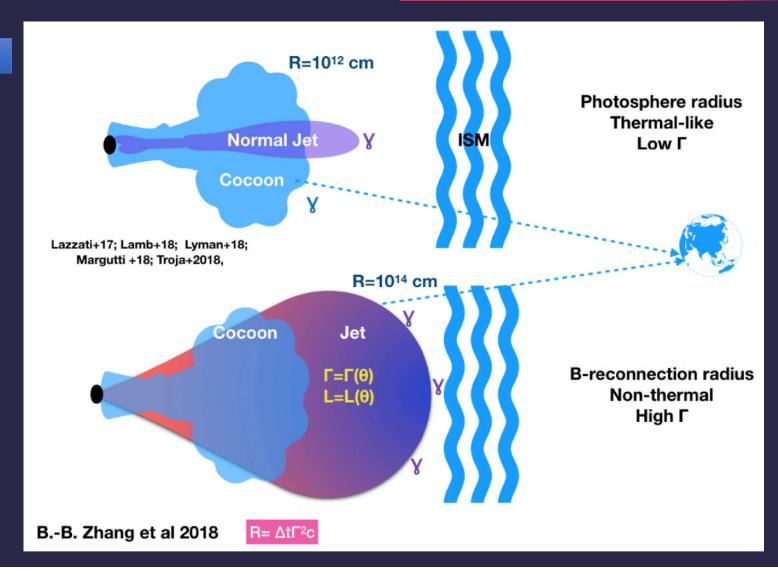
$$\rho_{0,\text{NS-NS}} = 1100^{+2500}_{-910} \text{ Gpc}^{-3} \text{ yr}^{-1}.$$

spone	ding to different distances. Ghirlanda et al 2010				
		R	D	Н	
	NS-NS	≤200 Mpc	≤300 Mpc	≤450 Mpc	
	Model (a)	$0.007^{+0.001}_{-0.003}$	$0.024^{+0.004}_{-0.007}$	$0.077^{+0.014}_{-0.028}$	
	Model (c)	$0.028^{+0.005}_{-0.010}$	$0.095^{+0.017}_{-0.034}$	$0.299^{+0.054}_{-0.108}$	

Pre-LIGO: a few Gpc -3 yr -1

There might be even less luminous sGRB

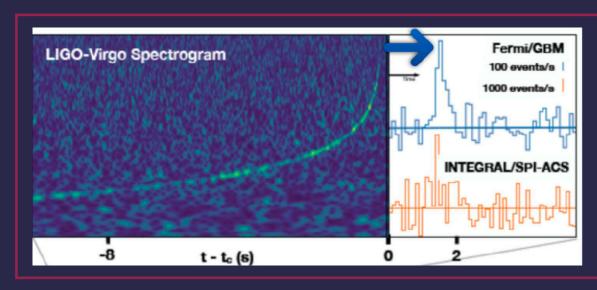
or:


A few similar NS-NS sGRBs hidden in theGBM archives Zhang, B.-B. et al 2018; see a good case in Burn et al 2018

What makes such a low-luminosity GRB?

Option 1: Cocoon

Option 2: Jet



See talk by Paz Beniamini

What makes such a low-luminosity GRB?

The 1.7 s time delay seems a clue!

1) Delayed launch of the jet?

What did the system do in 1.7 s? (very long time after the merger)
Accretion time? too short!

2) Delay formation of a BH?

But BH for GRB 170817A is not even needed.

- 3) **Delayed dissipation (magnetic field amplification)?**Allowed but not needed.
- 4) Central engine delay (propagation)?

Jet needs travel to a distance (R) to emit gamma-rays!

- 1) Delayed launch of the jet? (mysterious) What did the system do in 1.7 s? (very long time after the merger) Accretion time? too short! Δt_{acc}
- 2) Delay formation of a BH? (maybe mysterious)

 But BH for GRB 170817A is not even needed. Δt_{je}
- 3) Delayed dissipation (magnetic field amplification)? (mysterious)
 Allowed but not needed.
- 4) Central engine delay (propagation)? Δt_{prop} Jet needs travel to a distance (R) to emit gamma-rays!

(1) system holding time before launching the jet

$$\Delta t_{
m jet}$$
 (due to mysterious reasons)

(2) Accretion Time scale

$$au_{\rm acc} \simeq rac{t_{
m fb}}{lpha} \simeq 5 \times 10^{-3} \left(rac{lpha}{0.1}
ight) {
m s}, ag{t_{
m fb}} \simeq 2 \left(rac{2}{G
ho_{
m NS}}
ight)^{1/2} \simeq 5 \times 10^{-4} {
m s},$$

$$t_{\rm fb} \simeq 2 \left(\frac{2}{G\rho_{\rm NS}}\right)^{1/2} \simeq 5 \times 10^{-4} s,$$

(3) jet propagation time before releasing gamma-rays

$$t_{\rm prop} \sim R/2\Gamma^2 c$$

$$\Delta t \sim (t_{\text{prop}} + \tau_{\text{acc}} + \Delta t_{\text{jet}})(1+z) \simeq (t_{\text{prop}} + \Delta t_{\text{jet}})(1+z).$$

If it is at magnetic dissipation radius (synchrotron):

$$t_{prop} = \frac{R}{\Gamma^2 c} = 1.7s \left(\frac{R}{5x10^{14} cm}\right) \left(\frac{\Gamma}{100}\right)^{-2} = 1.7s \left(\frac{R}{5x10^{12} cm}\right) \left(\frac{\Gamma}{10}\right)^{-2}$$

Δt_{jet} is not needed

$$\Delta t \sim (t_{\text{prop}} + \tau_{\text{acc}} + \Delta t_{\text{jet}})(1+z) \simeq (t_{\text{prop}} + \Delta t_{\text{jet}})(1+z).$$

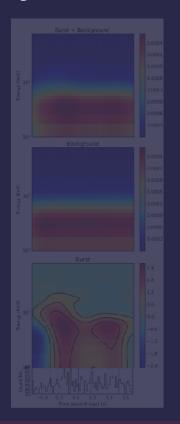
If it is at photosphere radius (thermal like):

$$t_{prop} = \frac{R}{\Gamma^2 c} = 1.7s \left(\frac{R}{10^{11} cm}\right) \left(\frac{\Gamma}{< 5}\right)^{-2} = 0.1s \left(\frac{R}{10^{11} cm}\right) \left(\frac{\Gamma}{10}\right)^{-2}$$

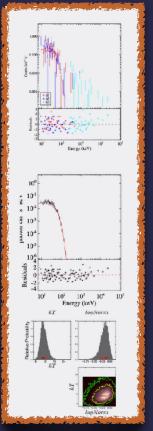
However with $\Gamma < 5$, the photosphere temperature is too low to explain Ep = 158 keV

For $\Gamma = 10$, an artificial Δt_{jet} is needed.

If you really want a Δt_{jet} :


- Hyper-massive NS (HMNS) forms in between?
 - ~ 100 ms (Rosswog et al 2013)
- Relativistic jet must break through the dynamical ejecta and/or neutrino driven wind.

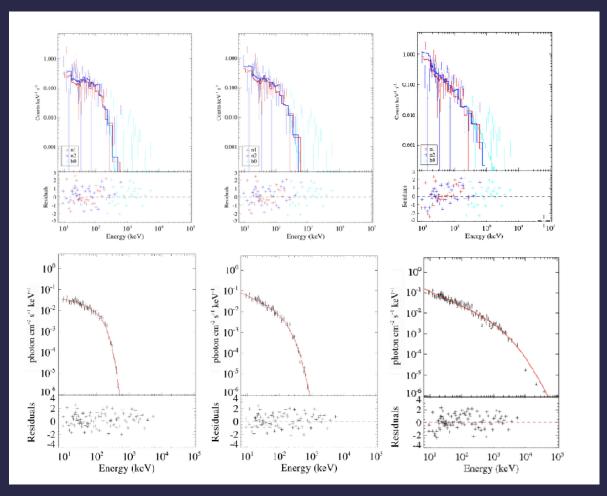
at most <=1 s , no detailed calculation (Moharana & Piran 2017)


Any hints from the spectra?

Precise Measurement in Time-Energy Domain

Ep=149 keV alpha = -0.66

kT= 10.8 keV


Supports photopshere model.

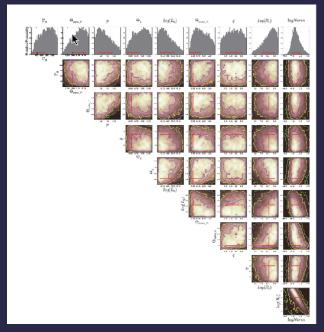
Yet not 100% conclusive.

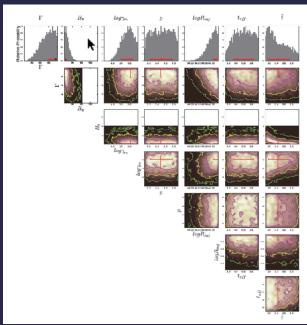
Physical Modeling

Meng, Geng, Zhang et al 2018

Structured Photosphere

CPL

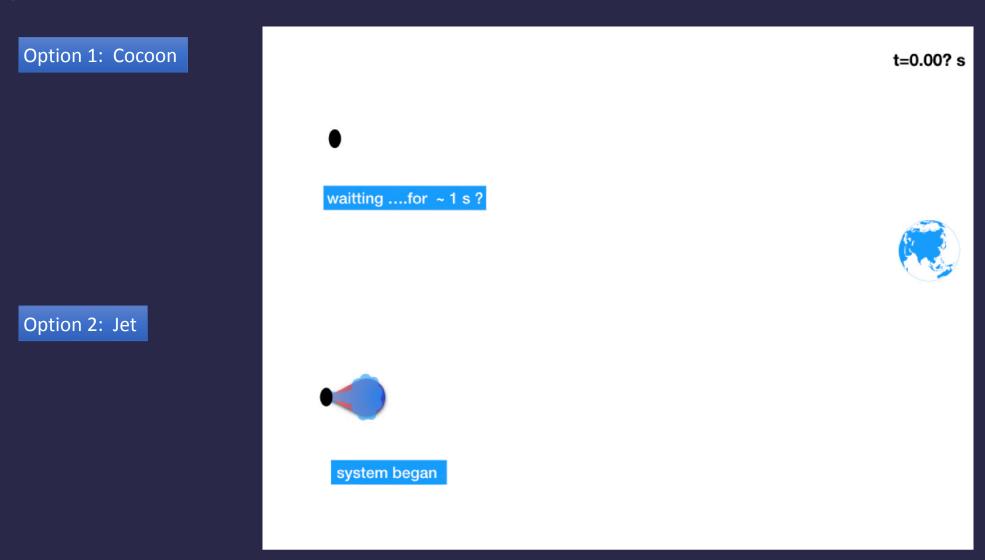

Synchrotron



Physical Modeling

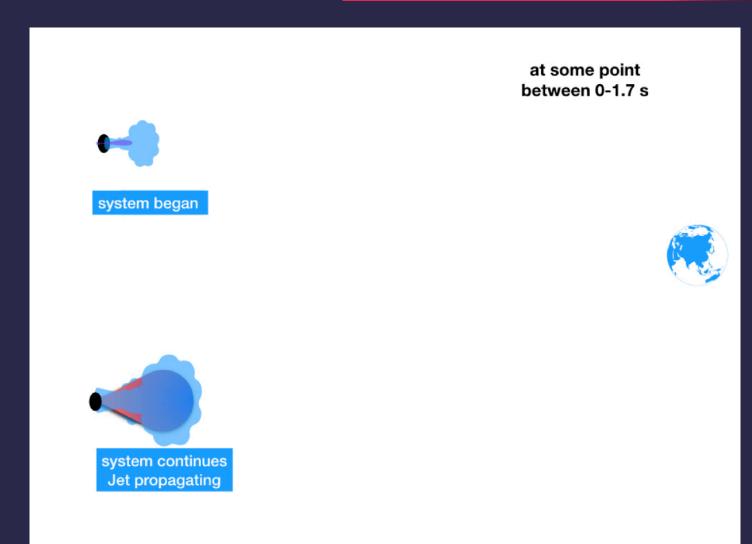
Meng, Geng, Zhang et al 2018

Both models are consistent with observed data

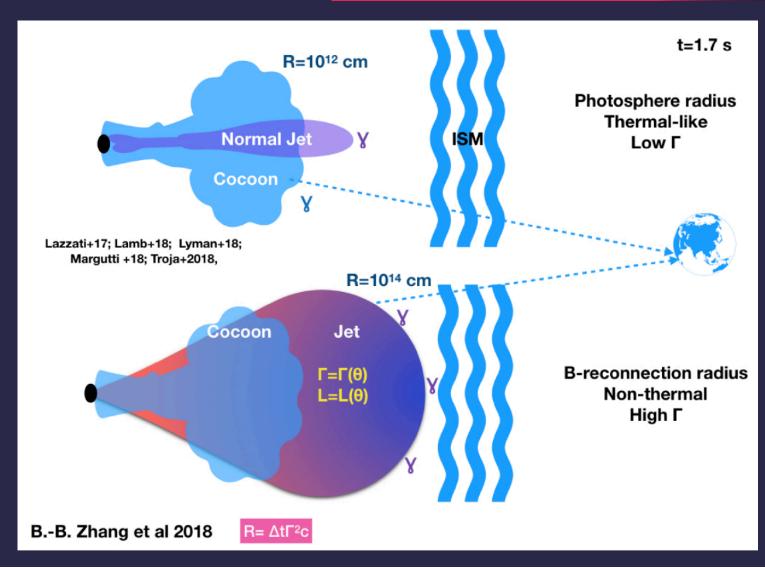

Structured Photosphere

Synchrotron

	Structure Photosphere	Magnetic Dissipation
Fits the Observed Spectrum	Yes	Yes
Thermal tail	Yes	
Radius	10 ¹¹ cm	10 ¹³ cm
Г	10	10-100
1.7s time delay	jet holding time needed	jet holding time not needed
T ₉₀		$\Delta t \sim t_{ m prop} \sim T_{ m 90} \sim R_{ m GRB}/\Gamma^2 c$.

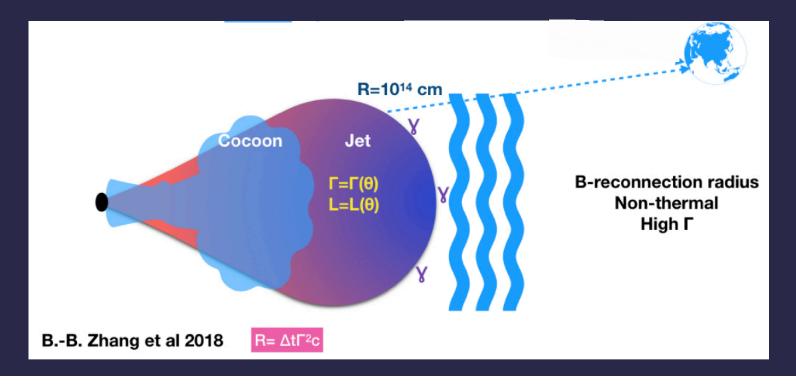


Option 1: Cocoon


Option 2: Jet

Option 1: Cocoon

Option 2: Jet



Conclusions:

- Structure jet viewed at off-axis.
- Traditional GRB mechanism: large emission radius, Poynting-flux dissipation
- Central engine delay, no significant cocoon emission
- No BH formation needed

Option 2: Jet

