The expected diversity of afterglows in future neutron star merger events

R. Mochkovitch, R. Duque & F. Daigne (IAP) [see also Poster by R. Duque at al]

Introduction – Objectives

One event: GW 170817/GRB 170817A with full display: γ , AG, KN D=40 Mpc ; θ_v =20-25°

We were lucky ! What do we loose if we increase D, θ_v ?

	GRB	AG	KN
D _{max} (Mpc)	50	100	~ 500
$ heta_{v,max}$?	30-35°	~ isotr.

- T Study of radio AG visibility and distribution of parameters in future GW BNS events
 - fraction of GW events to be detected in radio as a function of D_{H,grav}
 - distribution in distance, viewing angle, flux, ...

Assumptions and methods

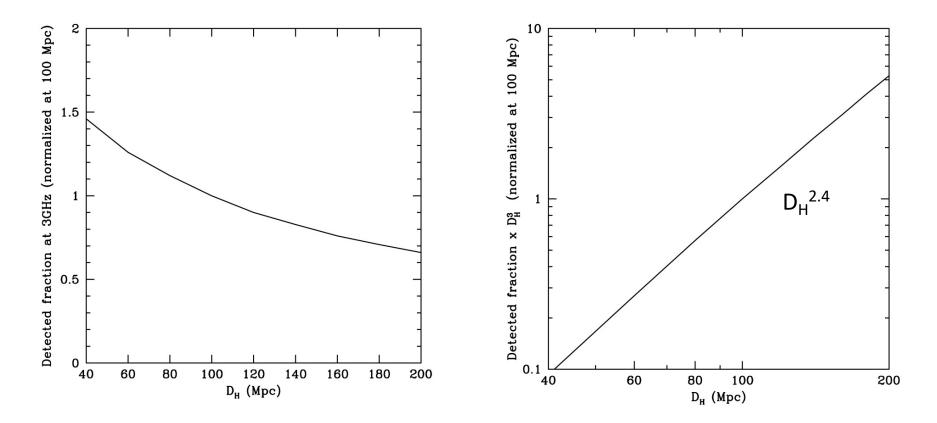
- Peak of the radio AG: delayed contribution of the central jet as in GRB 170817A [jets in SHBs are mostly successful (Beniamini et al., 2018) $\dot{e}(\theta)$ decrease sufficiently rapidly outside the jet (cocoon below jet contribution at peak)
- Parametrized jet model: F_{max} , t_{max} [E_{iso} , θ_{j} , n, ε_{e} , ε_{B} , p, θ_{v} , D]

 F_{max} (but not t_{max}) only weakly depends on the assumption about angular spreading

$$F_{max} \propto \frac{E_{iso}}{D^2} \epsilon_e^{p-1} \epsilon_B^{\frac{p+1}{4}} n^{\frac{p+1}{4}} \theta_j^2 \theta_v^{-2p} \propto \frac{E_{iso}}{D^2} \epsilon_B^{0.8} n^{0.8} \theta_v^{-4.4} \quad \text{(with } \epsilon_e = 0.1 \text{ ; } \theta_j = 0.1 \text{ ; } p = 2.2\text{)}$$

- Detection threshold at 3 GHz: 10 μ Jy
- Distribution of parameters: D, θ_{v} , E_{iso} , n, ε_{B}

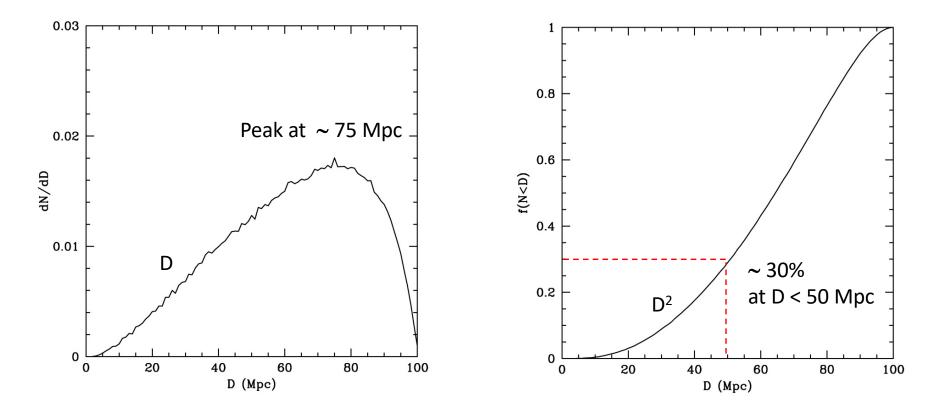
 $[D, \theta_v]$: fix D_{max} : horizon in GW (θ_v =0)


Draw: a distance within $D_{\mbox{\scriptsize max}}$ (uniform density distr.)

a viewing angle (random line of sight)

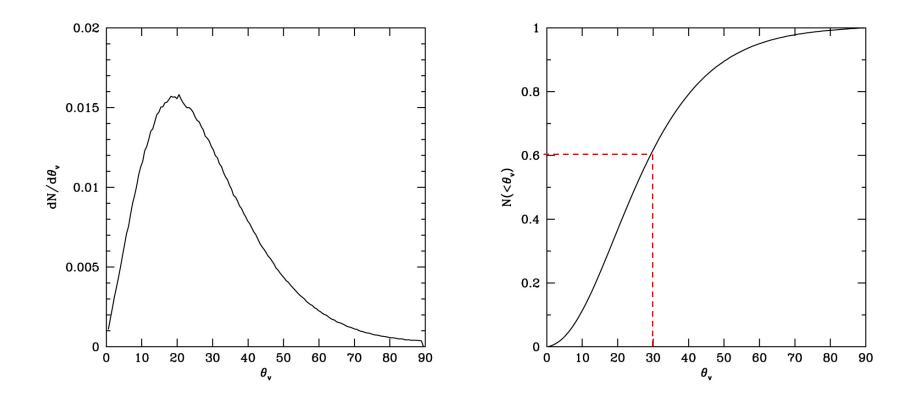
keep if detected in GW $f_{grav} \sim 0.3$ [E_{iso}] : broken power-law : E_{min} =10⁵¹ erg ; E_{max} =10⁵³ erg ; E_{tr} =2 10⁵² erg ; α_1 =-0.7 ; α_2 =-2 [n] , [e_B] : both log-normal centered at -3

Results


Fraction of GW events detected in radio as a function of GW horizon distance

Normalized fraction only weakly depends on the distributions of E_{iso} , n, ε_B Absolute fraction for the adopted distributions: $f_{det} \sim 50\%$

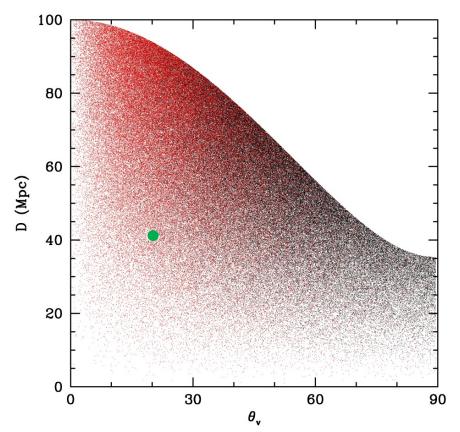
Distribution in distance for events detected in radio


Assuming a conservative GW horizon distance D_H =100 Mpc

dN/dD D and f(<D) D^2

As the distance increases, source with large viewing angles are lost $(F_{max} = \theta_v^{-4.4})$

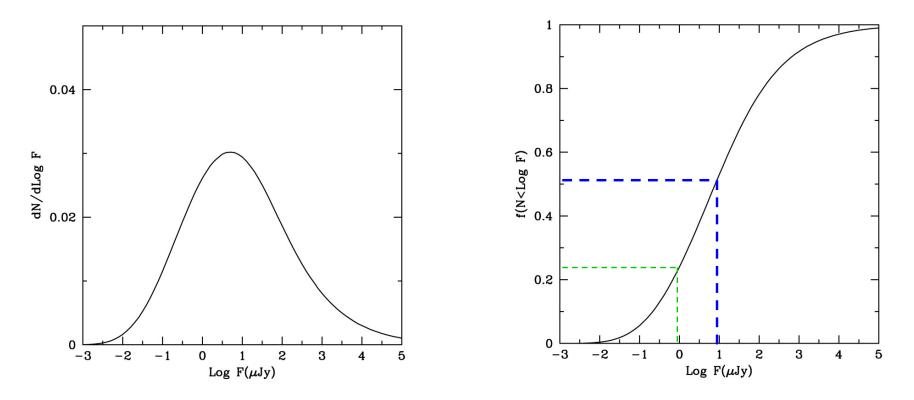
Distribution in viewing angle



Peak of the distribution in viewing angle at $\theta_{\rm v}$ ~ 20°

60% of events at θ_v < 30°

When D_H increases the peak of the distribution shifted to smaller θ_v


[Viewing angle – Distance] diagram

black dots: all sources detected in GW red dots: sources detected in radio appear concentrated at small viewing angles and large distances

GRB 170817A

Distribution in flux

- $\sim~50\%$ of the sources above VLA detection threshold of 10 μJy
- ~ 75% with an increase by a factor of 10 in sensitivity

[but depends on the distributions adopted for E_{iso} , n, ε_B]

Conclusions

- Assuming that in most cases the peak of the radio AG corresponds to the delayed contribution of a successful central jet we have obtained the distribution of various observables for the radio afterglows: f_{det} , D, θ_v , F
- The time to build up these distributions will depend on the (still uncertain) detection rate of radio afterglows, but could be quite long...
- For a fixed D_H, the distributions of D, θ_v , do not vary much when input parameters (distributions of E_{iso}, n, ϵ_B) are changed
- The peak of the distribution of viewing angle is about 20° and expected to decrease when D_H increases
- Extension of this work to include the distribution of more observables: peak time, centroid motion...