SEARCH FOR HIGH-REDSHIFT BLAZARS WITH Fermi/LAT

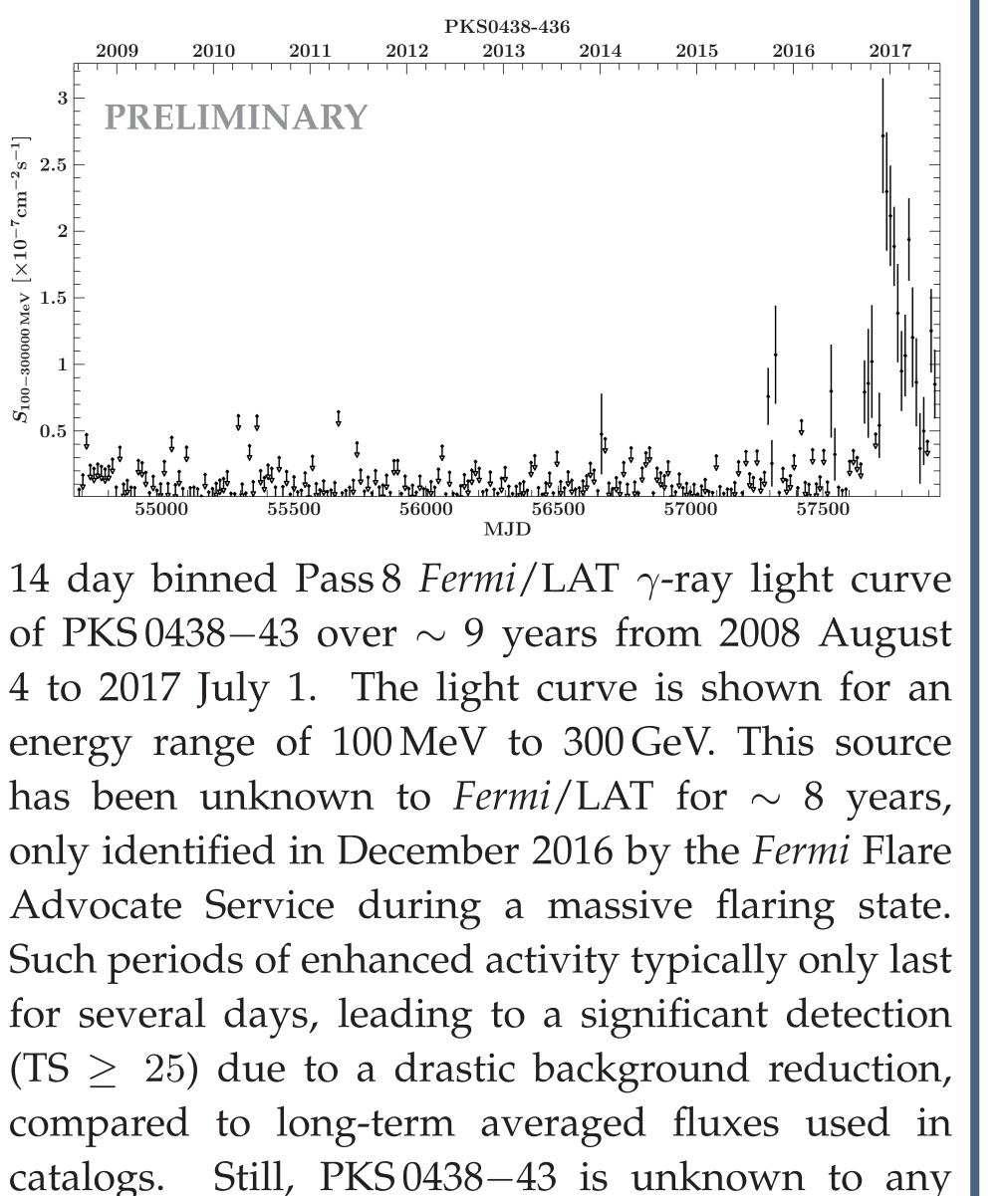
MICHAEL KRETER^{1,2}, MATTHIAS KADLER², ROOPESH OJHA⁴, SARA BUSON², FOR THE *Fermi*/LAT COLLABORATION JOERN WILMS⁵, MARKUS BÖTTCHER¹

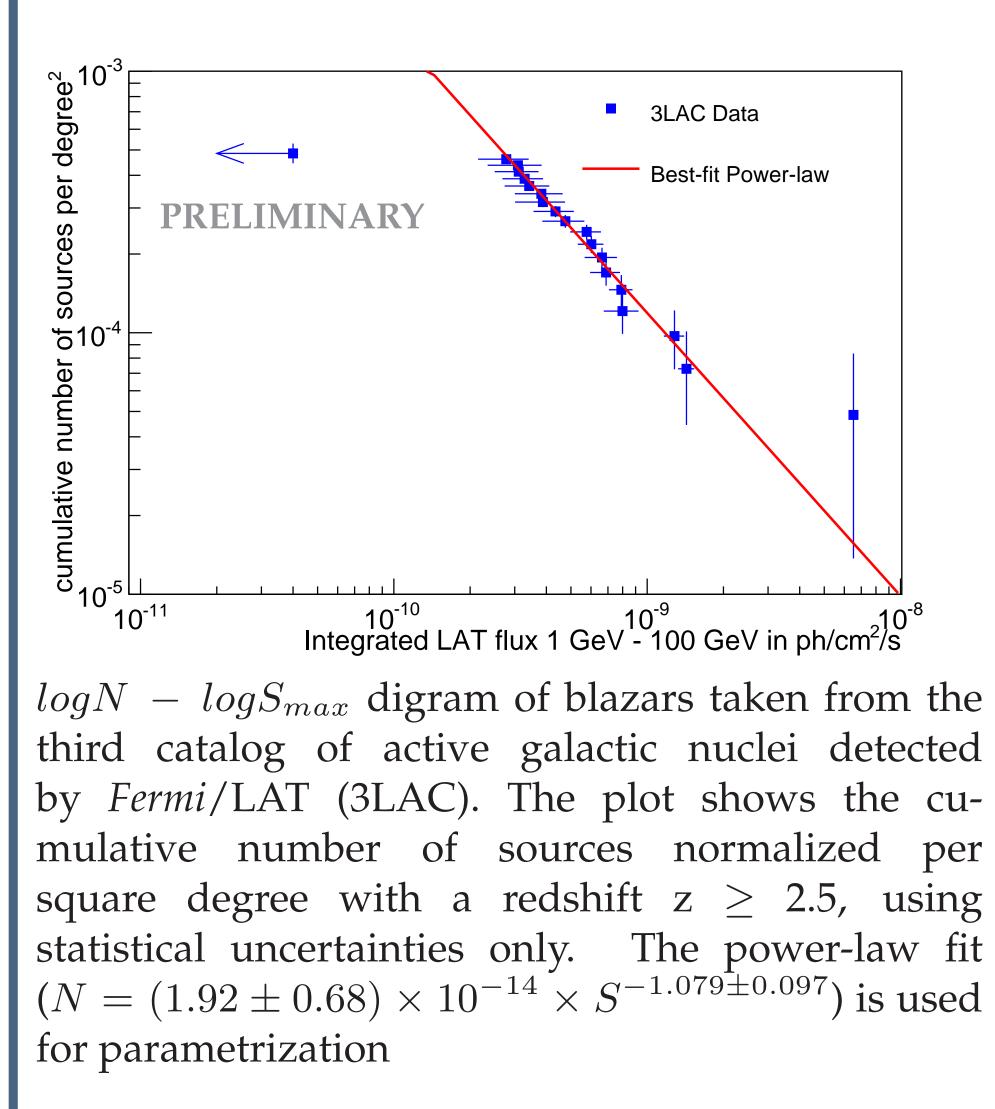
¹Centre for Space Research, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
²Lehrstuhl für Astronomie, Universität Würzburg, Emil-Fischer-Strasse 31, 97074 Würzburg, Germany
³ECAP, Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
⁴NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
⁵Dr. Remeis Sternwarte & ECAP, Universität Erlangen-Nürnberg, Sternwartstrasse 7, 96049 Bamberg, Germany.

Email: michael@kreter.org

Abstract

High-redshift blazars are difficult to study with *Fermi*/LAT, as their emission peaks are often downshifted to energies below the GeV band and at their large distances, only the very brightest objects are detectable. On the other hand, high-redshift blazars are disproportionately important targets, because they serve as cosmological probes and represent the most powerful class of γ -ray emitting sources in the Universe. Unfortunately, only a small number of high-redshift blazars could be detected with *Fermi*/LAT so far. We developed a strategy to increase the detection statistic at redshift $z \ge 2.5$ via a search for flaring events in high-redshift γ -ray blazars which long-term flux is just below the sensitivity limit of *Fermi*/LAT.

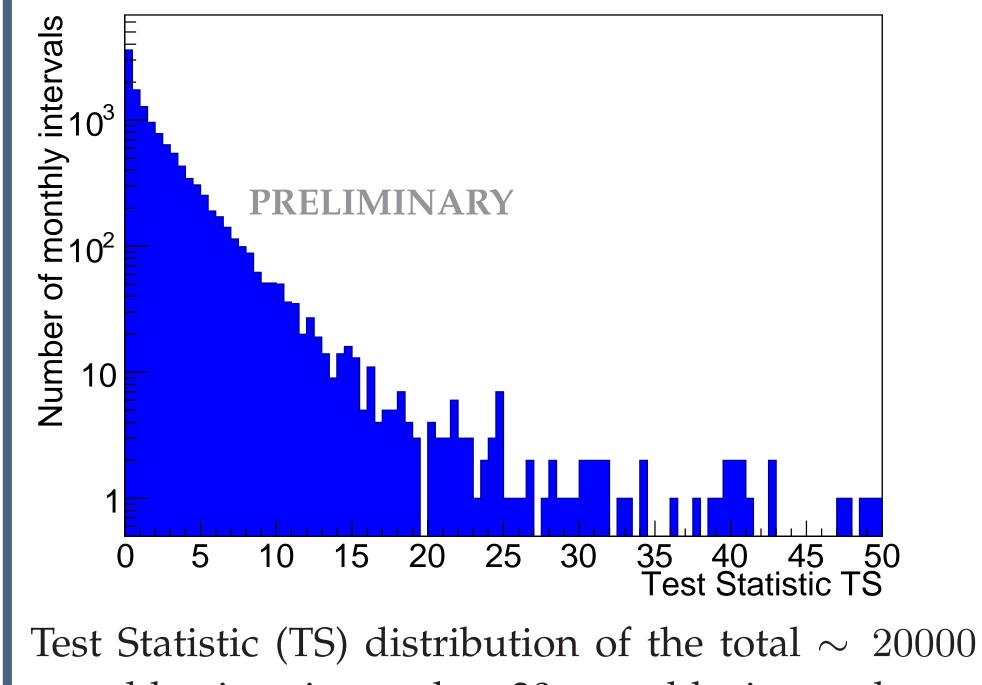

Motivation & Sample Selection


Detection Strategy

Detection Potential

High-redshift blazars are of particular interest in the filed of γ -ray Astronomy, as they account for one of the most powerful (non-transient) astrophysical sources ever detected by *Fermi*/LAT. These sources possess the highest jet powers and accretion luminosities and have black-hole masses often in excess of $10^9 M_{\odot}$. They are important as cosmological probes and serve as test objects for blazar evolution models, which directly implies, that the detection of new high-redshift blazars would test the hypotheses of blazar evolution. In fact, only a small number of high-redshift blazars has been detected by *Fermi*/LAT, some of them only because of bright flaring states.

A systematic search for γ -ray undetected highredshift blazars is performed by targeting a sample of 176 blazars with a redshift of $z \ge 2.5$ and a radio flux density of more than 50 mJy, taken from the Roma BZCAT^{*a*} Multifrequency Catalogue of Blazars and the SHAO^{*b*} list of high-redshift radio- loud quasars. The total sample consists of 169 BZCAT blazars, as well as 7 SHAO sources, fitting the selection criteria mentioned before. Monthly binned *Fermi*/LAT γ -ray light curves are calculated for the entire sample to keep the computing effort at a reasonable level.



For PKS0438–43, which was not detected in the 3LAC, we calculate the corresponding upper limit, which is shown in the $log N - log S_{max}$ diagram at 4×10^{-11} ph/cm²/s. Based on the power-law fit, the $log N - log S_{max}$ distribution predicts ≈ 140 high-redshift blazars at similar or higher γ -ray flux levels, of which only 19 are known in the 3LAC. Considering the 19 known high-z blazars reported in the 3LAC, 3 out of 19 sources showed bright γ -ray flares in the past 9+ years. Somewhat fainter flares, which would not led to Astronomer's Telegrams are likely more frequent so that a fraction of 3/19, i.e., about 16% can be considered a conservative lower limit. Thus, this approach should be capable to detect about 22 γ -ray flares of hitherto unknown high-redshift blazars in the MeV to GeV regime.

a http://www.asdc.asi.it/bzcat/ b http://202.127.29.4/CRATIV/en/high_z.html

Detected Monthly Intervals

published *Fermi* catalog.

Recently, 5 new high-redshift blazars have been identified by *Fermi*/LAT, making NVSS J151002+570243 the most distant known γ -ray emitting blazar at z = 4.31.

We introduce a new method to search for hitherto undetected high-redshift γ -ray emitting blazars, which are too faint to be detected significantly on long time periods typically considered for *Fermi* catalogs, but can show up as significant sources during shorter (~ monthly) periods of increased activity.

Newly Identified γ -ray Blazars

Source Name	RA J2000	DEC J2000	Z	Detections $TS \ge 25$
5BZQ J0009+0625	2.32	6.43	2.69	1
5BZQJ0339-0133	54.75	-1.55	3.20	4
5BZQJ0434-4355	68.51	-43.93	2.65	4
5BZQJ1441-1523	220.44	-15.39	2.64	2
5BZQJ1837-5848	279.47	-58.80	3.04	15
5BZQ J2219-2719	334.90	-27.32	3.63	1
5BZQ J2321-0827	350.33	-8.46	3.16	3

monthly time intervals. 30 monthly intervals are identified with a significance of $TS \ge 25$, while at a $TS \ge 9$ level 411 months are detected. While the majority of intervals is well below $TS \le 9$ and thus likely just of accidental nature, these $TS \ge 25$ intervals can be considered as a significant source identification caused by 7 different blazars.

Contact Information

Michael Kreter Centre for Space Research North-West University, Potchefstroom, South Africa Email: michael@kreter.org We identified 30 γ -ray flares from 7 high-redshift blazars, which were too faint to be detected on long-term time scales of several years, but showed significant γ -ray activity at a $\geq 5\sigma$ significance level on monthly time scales. With a redshift of z = 3.63, the source 5BZQJ2219–2719 represents the farthest new γ -ray blazar identified by this analysis. Still, these sources represent only a small fraction of potentially detectable high-redshift blazars. Some studied sources are detected slightly below the $\geq 5\sigma$ threshold and thus, are not included in this table. A total of 411 intervals have been detected at a significance level of TS \geq 9, with several sources showing multiple detections. While such an individual detection would not be significant enough to claim the detection of a new γ -ray source, multiple detections from a single source could lead to a robust source identification. However, a detailed understanding of the expected background background fluctuation is required for such an analysis.