Investigating the (lack of) gamma-ray emission from superbubbles

Pierrick Martin and Virginie Slagmolen
CNRS, Université de Toulouse, IRAP (Toulouse, France)

Context and objectives

Superbubbles (SBs) are a possible key player in the acceleration of galactic cosmic rays (CRs). Large amounts of kinetic energy are released over short times by the many massive stars at their center, hence setting appropriate conditions for efficient shock and/or stochastic acceleration and reacceleration, possibly up to ~PeV energies and beyond. Yet, SBs did not show up as a conspicuous source class in the GeV-TeV gamma-ray sky, with only two likely associations: the Cygnus cocoon in the Galaxy, and 30 Dor C in the Large Magellanic Cloud (LMC).

Using a very simple model for CR diffusion in a SB, we investigated whether this paucity can be due to SBs actually being rare as a result of a low gamma-ray emission duty cycle. We examine under which conditions the GeV/TeV properties of 30 Dor C can be reproduced, and what these conditions imply in terms of duty cycle.

Model for SB evolution and CR diffusion

Superbubble
- Coeval massive star population 8-120 M⊙
- Average mechanical power 10²⁰ erg/s/massive star
- Dynamical SB model, uniform ambient density (Weaver-1977)

Cosmic rays (nuclei only !)
- Uniform supernova (SN) rate over 3-37 Myr (see Ferrand-2010)
- Impulsive release of 10²⁰ erg/SN in >1GeV CRs
- Power-law CR spectrum, index α=2.0...2.5, cutoff 100TeV…1PeV
- Spatial diffusion with D(ρ)=D_0 10²⁻¹...10³ cm²/s, β=1/3
- No CR forward escape and/or reacceleration, no energy losses
- Two limiting spatial injection scenarios:
  - S1 – at SB center (SNR dissolves quickly in SB interior)
  - S2 – in SB shell (SNR expands up to colliding with SB shell)

Gamma rays (hadronic only !)
- From CRs interacting with SB shell (where 99% of the mass is)
- Pion decay computed using Naima

Gamma-ray emission duty cycle

- Fraction of time the SB shell shines above level resulting from CR background
- Depends on CR background level (aka CR sea, ~3 lower in LMC than locally)
- Depends on CR confinement inside SB (diffusion coefficient)
- Depends on average time between SNe (stellar population)

Preliminary conclusions

- Scenario 1: strong confinement (D_0<10²⁶ cm²/s) reproduces the TeV luminosity of 30 Dor C while suppressing/delaying GeV luminosity. Implies a >90% duty cycle with high GeV/TeV luminosities, a priori not consistent with observed paucity of SBs.
- Scenario 2: moderate or no confinement (D_0>10²⁶ cm²/s) needed to avoid GeV CRs accumulating in SB shell and radiating above LAT upper limit. High >90% duty cycle dominated by low GeV/TeV luminosities. TeV emission from 30 Dor C at the level observed by HESS corresponds to a duty cycle < a few %.

30 Doradus C simulations

- 33 O/WR stars (Testor-1993, Walborn-1999), translates into SN rate 3-4/Myr
- Assumed age ~5 Myr
- Ambient density 30 cm⁻³ so as to get a shell mass 3×10⁶ M⊙ (Sano-2017)
- Shell radius 45pc, thickness 10pc (Sano-2017)

Scenario 1 - CRs injected at SB center

Scenario 2 - CRs injected in SB shell

Fig 1: One 30 Dor C-like realization of the model

Spikes correspond to supernova explosions (7 over the time frame plotted here)

Radio = GeV/TeV hadronic emission from CRs interacting with the SB shell

Yellow/purple = a simple pulsar/PWN model inspired from the LAT 2nd pulsar catalog and HESS PWNe catalog

Green = GeV/TeV hadronic emission from CR background interacting with the SB shell as shown as dashed lines

Fig 2: Results of statistical analysis of 100 SB realizations (random available in the SNe explosion dates)

Two injection scenarios are compared: injection at the SB center (4 upper panels) or in the SB shell (4 lower panels)

For each scenario, several diffusion normalizations were tested: 10²⁶ cm²/s (SBs), 10²⁷ and 10²⁸ cm²/s

Pics show the mean of the luminosity and photon index in the GeV and TeV bands (10% band is a result of the luminosity).

Results are compared to HESS measurements and Fermi-LAT upper limit

Curves were smoothed for readability. Luminosity measurements estimates for the 10²⁶ cm²/s cases suffer from insufficient statistics.