



# Cosmology with Fermi-LAT

#### **Alberto Domínguez**

Grupo de Altas Energías, Universidad Complutense de Madrid

R. Wojtak, J. Finke, M. Ajello, A. Desai, F. Prada, K. Helgason, V. Paliya, L. Marcotulli, D. Hartmann





Domínguez, Primack, Bell Scientific American, August 2015

Fermi Symposium 10<sup>th</sup> Anniversary, Baltimore 14 – 19 October 2018

## **Galaxy Evolution and Cosmology**



## 

 $Ω_{\Lambda}$  dark energy  $Ω_{D}$  dark matter

 $\Omega_{\rm h}$  baryons

## **Extragalactic Background Light**



#### **Gamma-ray Attenuation**



#### **Gamma-ray** Attenuation



## **Optical Depths from Gamma-ray data**



## EBL model compatibility with Gamma-ray data

| Model                             | Ref. | Significance of $b=0$ $b^{\rm b}$ Rejectiona $b^{\rm b}$ |                   | Significance of b=1<br>Rejection <sup>c</sup> |
|-----------------------------------|------|----------------------------------------------------------|-------------------|-----------------------------------------------|
| Scully et al. (2014) – high       | (49) | 16.0                                                     | $0.42 \pm 0.03$   | 17.4                                          |
| Kneiske et al. (2004) – best -fit | (50) | 16.9                                                     | $0.68 {\pm} 0.05$ | 6.0                                           |
| Gilmore et al. (2012) – fixed     | (51) | 16.7                                                     | $1.30 {\pm} 0.10$ | 3.0                                           |
| Gilmore et al. (2012) – fiducial  | (51) | 16.6                                                     | $0.81 {\pm} 0.06$ | 2.9                                           |
| Dominguez et al. (2011)           | (16) | 16.6                                                     | $1.31 \pm 0.10$   | 2.9                                           |
| Franceschini et al. (2017)        | (52) | 16.4                                                     | $1.25 {\pm} 0.10$ | 2.5                                           |
| Gilmore et al. (2009)             | (53) | 16.7                                                     | $1.03 {\pm} 0.08$ | 2.4                                           |
| Inoue et al. (2013)               | (54) | 16.2                                                     | $0.87 {\pm} 0.06$ | 2.1                                           |
| Kneiske & Dole (2010)             | (55) | 16.8                                                     | $0.94{\pm}0.08$   | 1.7                                           |
| Helgason et al. (2012)            | (17) | 16.5                                                     | $1.10{\pm}0.08$   | 1.3                                           |
| Finke et al. (2010) – model C     | (15) | 17.1                                                     | $1.03 \pm 0.08$   | 0.4                                           |
| <i>Scully et al. (2014) – low</i> | (49) | 16.0                                                     | $1.00 \pm 0.07$   | 0.1                                           |
|                                   |      |                                                          |                   |                                               |

Abdollahi+ 18

Somehow these two models bracket the EBL uncertainties that are compatible with gamma-ray attenuation

## **Measuring H**<sub>0</sub> with Gamma-ray attenuation



## **Measuring H**<sub>0</sub> with Gamma-ray attenuation



## **Comparison with other Methodologies**

| Gamma-ray attenuation (This Work)                     | -     |
|-------------------------------------------------------|-------|
| *                                                     |       |
| eCMB+BAO+Cepheids+SNe (Hinshaw et al. 2013)<br>◆      |       |
| Planck+WP+highL+BAO (Ade et al. 2013)                 |       |
| Gamma-ray attenuation (Domínguez & Prada 2013)        |       |
| Planck TT, TE, EE+lowPWP+highL+BAO (Ade et al. 2015)  |       |
| DES (combined, Abbott et al. 2018)                    | inary |
| Type la Supernova (Riess et al. 2018)                 |       |
| High-redshift Galaxy Clusters (Bonamente et al. 2006) |       |
| Type la Supernova (Riess et al. 2011)                 |       |
| Gravitational Lensing (Suyu et al. 2012)              |       |
| CMB+BAO (Anderson et al. 2012)                        |       |
| Extragalactic HII (Chávez et al. 2012)                |       |
| CMB (Hinshaw et al. 2013)                             |       |
| Galaxy Clustering (Chuang et al. 2013)                |       |
| Cepheids (Freedman et al. 2012)                       |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | 85 9  |

Combination of techniques is important to control systematics

Domínguez+ (in prep.)

#### **Results: Only Gamma Rays**



#### **Results: Only Gamma Rays**



#### **Results: Combined with other Methodologies**



#### **Results: Combined with other Methodologies**

![](_page_13_Figure_1.jpeg)

#### **Summary**

- Measurements of gamma-ray attenuation can be used to extract cosmological information: novel and independent technique

- These latest optical-depth measurements, both from Fermi-LAT and Cherenkov telescopes, have been used to search for the  $\rm H_{0}$  and  $\Omega_{\rm m}$  values

- We obtain  $H_0 = 66.4_{-2.3}$  + <sup>1.5</sup> km/Mpc/s (fixing WM=0.27) compatible with the lower end of Hubble constant measurement from other methodologies

- First attempt of measuring simultaneously  $H_0$  and  $\Omega_m$  with gamma rays leading to  $\Omega_m$ < 0.35 (2sigma)

![](_page_15_Picture_0.jpeg)

#### **EBL models: Finke+ 10**

![](_page_16_Figure_1.jpeg)

Dust emission computed self-consistently:

 $f_n \int d\epsilon \, \frac{1}{f_{esc}(\epsilon)} [1 - f_{esc}(\epsilon)] \, j_{\epsilon}^{stars}(z) = \int d\epsilon \, j_{\epsilon,n}(\Theta_n)$ 

Three component dust model:

| Component         | n | $f_n$ | $T_n$ [K] | $\Theta_n \ [10^{-9}]$ |
|-------------------|---|-------|-----------|------------------------|
| Warm Large Grains | 1 | 0.60  | 40        | 7                      |
| Hot Small Grains  | 2 | 0.05  | 70        | 12                     |
| PAHs              | 3 | 0.35  | 450       | 76                     |

EBL energy density: 
$$\epsilon u_{EBL}(\epsilon; z) = \int_{z}^{z_{max}} dz_1 \frac{\epsilon'' j_{\epsilon''}(z_1)}{(1+z_1)} \left| \frac{dt_*}{dz_1} \right|^2$$

JF, Razzaque, & Dermer, (2010), ApJ, 712, 238 Razzaque, Dermer, & JF, (2009), ApJ, 697, 483

### EBL models: Domínguez+ 11

![](_page_17_Figure_1.jpeg)

Total: 5986 galaxies

![](_page_17_Figure_3.jpeg)

## **Optical depth dependence with \Omega\_{\mu}**

![](_page_18_Figure_1.jpeg)

## **Optical depth dependence with \Omega\_{n}**

![](_page_19_Figure_1.jpeg)

## **Optical depth dependence with \Omega\_{n}**

![](_page_20_Figure_1.jpeg)