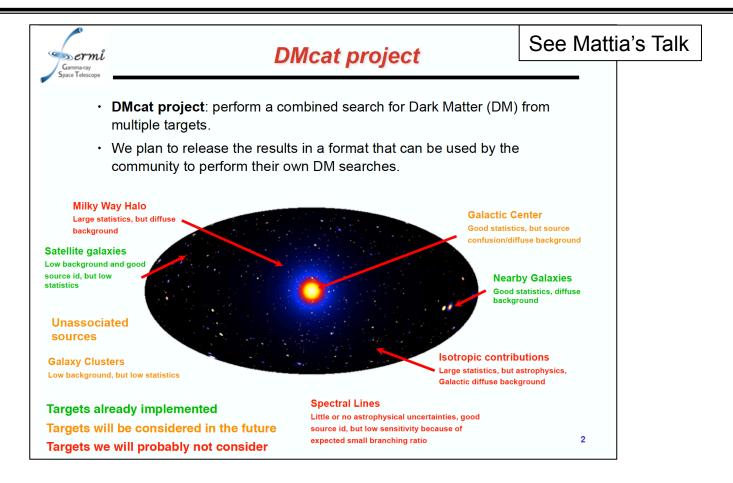


Tools for Creating Analysis Pipelines for Diffuse Emission Modeling and Dark Matter Searches

Eric Charles

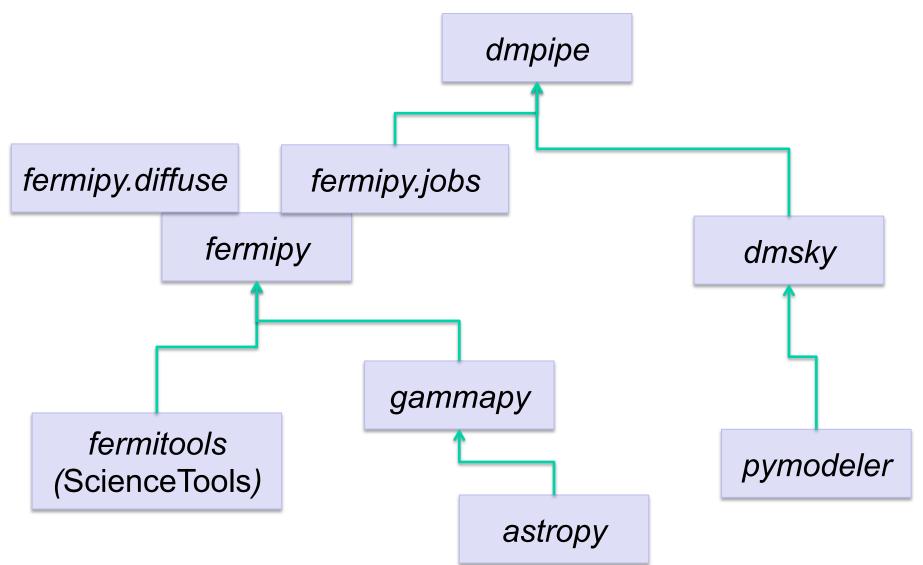
Mattia di Mauro, Matthew Wood

8th International Fermi Symposium Baltimore, Maryland 18th October, 2018

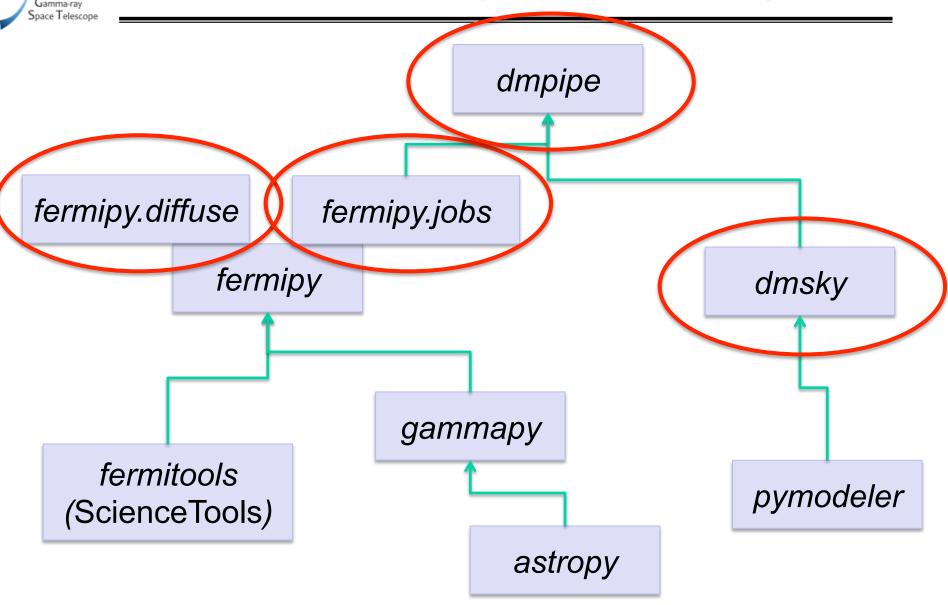


Outline

- Dark Matter Catalog (DMCat) Project
- Software tools
 - dmsky: bookkeeping and modeling of DM targets
 - fermipy.jobs & dmpipe: DM target analysis pipeline
 - fermipy.diffuse: All-sky analysis for diffuse emission modeling
- Summary


DM Catalog Project

- Mattia presented the DMCat project; this talk is about the underlying software.
- All of the software is publically available. We intend to release many of the intermediate data products as well.

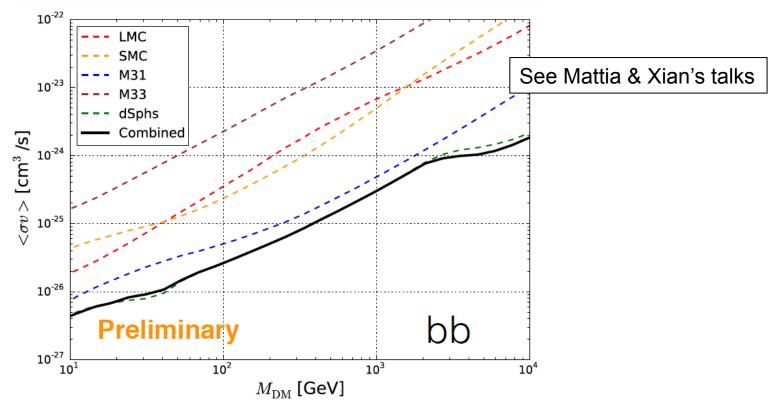


Software Tools (and dependencies)

Software Tools (and dependencies)

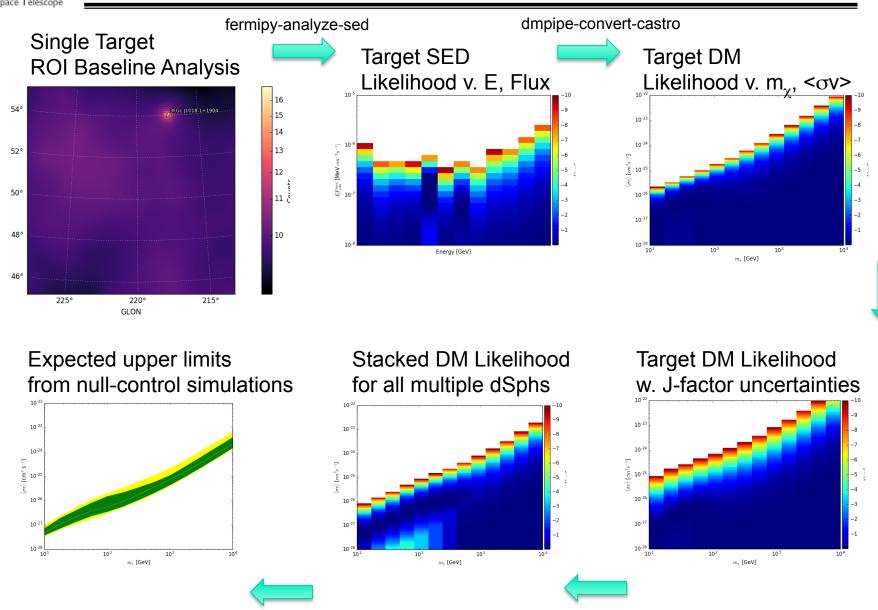
dmsky: bookkeeping and modeling of DM targets

Combined J-factor Map from dSphs and Milky Way Halo: Galactic coordinates, Mollweide projection



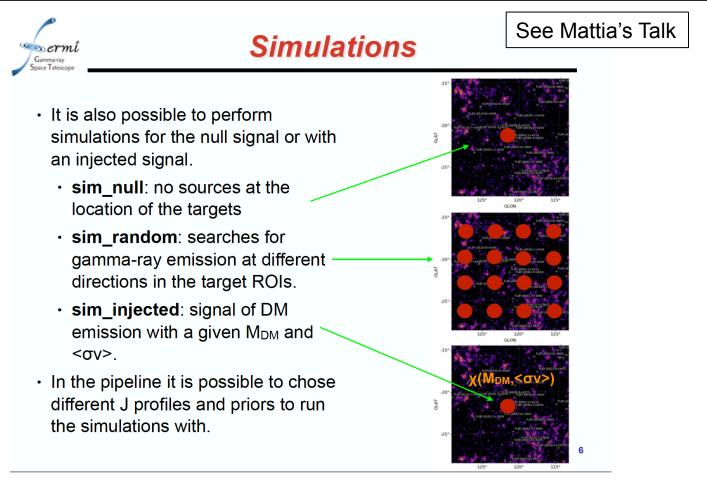
- This all-sky J-factor map was generated using dmsky, and includes 24 Dwarf spheroidals (dSphs) and the Milky Way halo
- dmsky allow users to define DM density profile for many analysis targets
 - Preforms line-of-sight integration to obtain astrophysical J-factors
- dmsky allows uses to define "rosters" of targets for combined analyses

dmpipe: DM analysis pipeline


Combined DM <ov> Upper Limits from MW Satellites and Nearby Galaxies

- dmpipe was used to produce combined results from MW satellites (dSphs, LMC, SMC) & nearby Galaxies (M31, M33)
- Analysis pipeline chains together many standalone steps
 - Similar to the way that the fermitools work
 - fermipy.jobs provides a way to run the entire pipeline at once

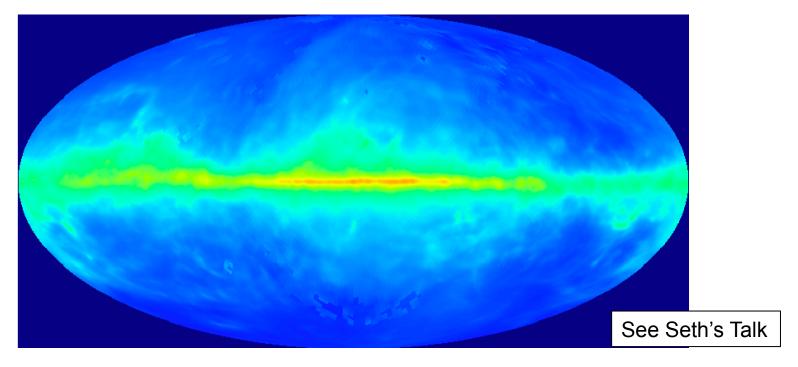
DM Analysis Pipeline Steps



dmpipe-stack-likelihood

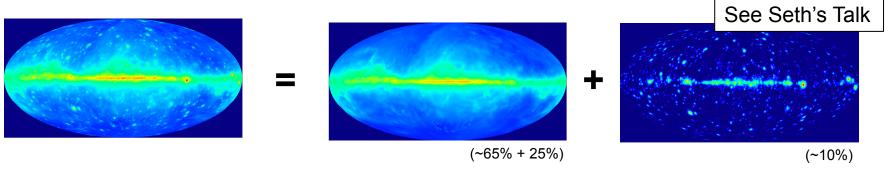
dmpipe-collect-stacked-limits

DM Analysis Pipeline Includes Standard Control Simulations



- A significant (dominant?) part of DM analysis is performing standard control studies
- We have implemented standardized version of these in the dmpipe analysis pipeline

fermipy.diffuse: All-sky Analysis for Diffuse Emission Modeling


All-sky diffuse emission model, Galactic Coordinates, Aitoff Projection

- Used to reproduce preliminary Pass 8 galactic diffuse emission model
 - Official model will be produced with the custom GaRDIAN package
- This work allows us to reproduce and extend on that work in the fermipy and fermitools environment

All-sky Diffuse Emission Modeling Pipeline

- The fermitools (formerly Fermi-LAT ScienceTools) did not originally support all-sky analysis
 - All-sky Galactic diffuse emission models have been created using custom software
 - GaDGET, e.g., Ackermann, M. et al. 2015, ApJ, 799, 86A.
 - GarDIAN, e.g., Ackermann, M. et al. 2012, ApJ, 750, 3.
- As of fermitools verision 1.0.0, specific tools do support all-sky analysis
 - However, it is not practical to analyze 5000+ FL8Y sources and 40+ diffuse emission components in a standard Fermi analysis
 - fermipy.diffuse analysis package parallelizes the data preparation

All-Sky Diffuse Analysis Data Preparation

Gaermi Space Telescope

LAT Data Set

fermipy-split-and-mktime-sg

- Joint analysis over 4 γ-ray data sets
 - 8-year data set matching 4FGL selection
 - Different combinations of PSF event types and zenith angle limits, cutting more severely at lower energies, so that residual Earth limb emission does not need to be modeled.

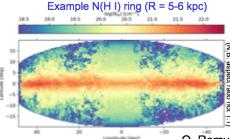
Energy Range	Zen. max	Pass 8 Source PSF types
30-100 MeV	80°	3
100-300 MeV	90°	2, 3
300-1000 MeV	100°	1, 2, 3
1 GeV – 1 TeV	105°	0, 1, 2, 3

Earth + Sky (>300 MeV)

https://apod.nasa.gov/apod/ap131206.html

2018 Fermi Symposium Baltimore

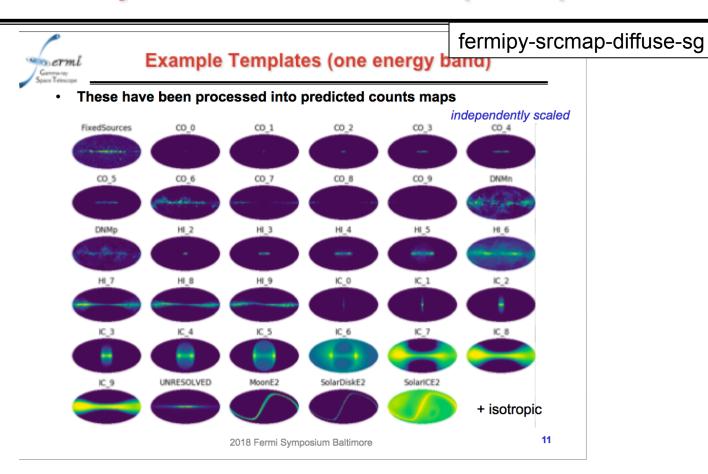
fermipy.diffuse bookkeeping tools to combine templates from GALProp and other sources such as the sun, moon, Fermi bubbles, etc.. fermipy.diffuse data preparation tools to sub-select events, bin them in HEALPix maps, produce corresponding exposure maps


fermipy-sum-ring-gasmaps-sg

Diffuse Emission Model Components

Gas: We use H I and CO spectral line surveys to trace (most of) the interstellar gas

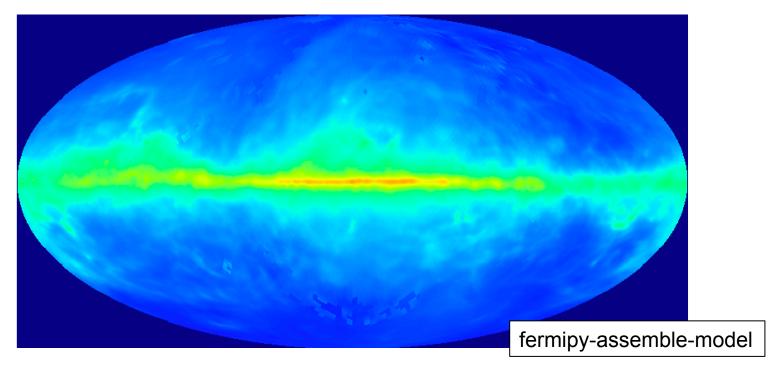
 Line profiles are used to estimate column densities



- Q. Ren

 Result is 'ring maps' for 10 ranges of Galactocentric distance
- These maps are taken to be the targets for cosmic-ray electrons and protons (Bremsstrahlung and π^0 decay)
- 'Dark Gas' neutral interstellar gas not traced properly in H I or CO
 - Using new Planck dust optical depth maps (τ_{353})
 - Improved angular resolution and dynamic range than SFD E(B-V), fewer artifacts around massive star-forming regions

All-Sky Predicted Counts Map Templates



- *fermipy.diffuse* tools to convolve component intensity maps with instrument response to produce predicted counts maps templates
- fermipy.jobs tools uses compute farm to run up to 500 cores simultaneously (total of ~8000 jobs for current model)

Combining Templates into Emission Models

All-sky diffuse emission model, Galactic Coordinates, Aitoff Projection

- fermipy.diffuse analysis pipeline produces a library of differential counts map templates sorted by emission component and energy range
- fermipy.diffuse package incudes tools to combine these templates into diffuse emission models

Summary

- DM catalog project work includes providing software tools and intermediate results to allow people to combine and update results from different analysis targets
- The software exists in a combination of the dmsky, fermipy and dmpipe python packages (see additional slides for more details)
 - All of these packages are publically available via github and PyPI
 - Documentation and examples are available via readthedocs.io
- We plan to release intermediate data products along with our publications (see additional slides for more details)
 - Exact list of data products is still under discussion, and depends primarily on practicality and value to community

MORE INFORMATION

Package References

- astropy: standard astronomical python library
 - http://www.astropy.org/
- fermitools (formerly ScienceTools): Fermi-LAT data analysis
 - https://github.com/fermi-lat/Fermitools-conda
- gammapy: gammay-ray data analysis libraries
 - https://docs.gammapy.org/
- dmsky: bookkeeping and modeling of DM targets
 - https://dmsky.readthedocs.io/
- fermipy: high level binned likelihood analysis of Fermi-LAT data
 - https://fermipy.readthedocs.io/
 - fermipy.jobs: tools to build analysis pipelines
 - fermipy.diffuse: tools for all-sky diffuse analysis
- dmpipe: DM analysis pipeline
 - https://dmpipe.readthedocs.io/

dmsky package details

- Installation:
 - pip install dmsky
- Documentation: https://dmsky.readthedocs.io/
- Code repo: https://github.com/fermiPy/dmsky
- Python Package Index: https://pypi.org/project/dmsky/
- Developers:
 - Alex Drlica-Wagner, Matthew Wood, Eric Charles
- Current version: dmsky 0.2.3
- Dependencies:
 - numpy, healpy, astropy, pymodeler

fermipy package details:

- Installation:
 - pip install fermipy
 - conda install fermipy
- Documentation: https://fermipy.readthedocs.io/
- Code repo: https://github.com/fermiPy/fermipy
- Python Package Index: https://pypi.org/project/fermipy/
- Developers:
 - Matthew Wood, Eric Charles, Mattia di Mauro, others...
- Current version: fermipy 0.17.3
- Dependencies:
 - numpy, healpy, astropy, gammapy, fermitools

dmpipe package details:

- Installation:
 - pip install dmpipe
- Documentation: https://dmpipe.readthedocs.io/
- Code repo: https://github.com/fermiPy/dmpipe
- Python Package Index: https://pypi.org/project/dmpipe/
- Developers:
 - Eric Charles, Mattia di Mauro
- Current version: dmpipe 0.1.2
- Dependencies:
 - numpy, astropy, fermipy, dmsky

DM Pipeline Intermediate Data Products

- Target J factor maps
- Pre-prepared events, spacecraft and livetime cube files
- Target ROI analysis inputs
 - Counts maps, exposure maps, "source map" templates
 - Model definitions
- Target ROI baseline analysis
 - fermipy Region of interest "snapshots"
- Target SED analysis
 - fermipy SED likelihood FITS files, L(E, F_F)
 - https://gamma-astro-data-formats.readthedocs.io/en/latest/spectra/
- DM Likelihoods, L(m_γ, <σv>)
 - DM likelihood "castro" files, modified version of SED FITS files
- Simulation summary data
 - Expectation bands for limits and maximum likelihood estimate

Diffuse Analysis Intermediate Data Products

- Pre-prepared events, spacecraft and livetime cube files
- HEALPix Binned Counts maps
- HEALPix Exposure Maps
- GALProp predicted emission templates
- Merged GALProp predicted emission templates
 - E.g., combining Galacto-centric rings and correlated components
- "SourceMap" differential counts map templates
 - These are identical to the output of the gtsrcmaps tool
 - Produced in parallel for each diffuse emission component
 - Produced in batches for catalog sources

Caveat: all of these data products are specific to a given data selection, IRF set and binning

Caveat 2: there are **strong**, **longstanding** differences of opinion about the utility of releasing the intermediate data products