pace Ie escope

High-energy Observations of Solar Flares During Solar Cycle 24 with the Fermi Large Area Telescope

Nicola Omodei, Alice Allafort, Melissa Pesce-Rollins, Francesco Longo

on behalf of the Fermi LAT collaboration

Fermi Symposium

Solar Flares in gamma-rays with Fermi

Cycle 24: Quietest cycle in the last 100 years!5 papers from the LAT collaboration published on individual flares

- Detailed likelihood analysis:
 - background sources, quiet Sun;
 - Model the source: power law vs Power law with exponential cut off;
 - **Pion decay template (from Ron Murphy) fitting;**
 - Compute the localization of the gamma-ray emission, optimize the localization in the analysis.

Solar Flare Catalog Framework

- SunMonitor runs continuously:
- Produces a list of 92 time windows candidates (TS>25)
- Yield 39 flares detections above 60 MeV
- LLE approach detected 6 additional above

45 Flares total :

- all associated with X-ray flare
- all but 3 associated with CMEs
- 3 from behind the limb (BTL)

• in each time window we independently model the background: galactic, isotropic (extragalactic + unresolved CR) +

One, or two distinct components

- Large effective are <1 GeV •
 - Larger field of view
 - Good for temporal and spectral studies Fermi Symposium

SOL 2017-09-10 shows multiple components

Catalog of **45 Flares**:

- **18** flares with a **Prompt** component synchronized with HXR
- 37 flares with some **delayed** component beyond HXR
 - 19 exhibit a delay longer than 2 hours.
 - 18 exhibit a delay shorter than 2 hr.
- 3 Behind The Limb flares

(4 flares show no prompt emission but delayed emission)

Fermi Symposium

Population studies: the Fermi LAT Solar Flare (FLSF) Catalog

Fermi Symposium

All flares are associated to GOES, and for the BTL we use the estimated equivalent class from STEREO fluxes

There doesn't seem to be any strong requirement on the GOES flare flux for a **FLSF** delayed or prompt

Fermi Symposium

Only 3 FSF not associated to CMEs

Most are Halo CMEs (all for fast CMEs)

Best predictor: **Delay extend beyond two hours Definite trend for long delayed FLSF** to be associated to faster CME

Fermi Symposium

Connection with CMEs

Distribution of the FLSF active regions

• North/South asymmetry: It is known that the distribution of AR shows an asymmetry with one hemisphere dominating at a given time Opposite in X-rays and gamma-rays!

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Fermi Symposium

Nicola Omodei – Stanford/KIPAC

Latitude

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

	Total	2010 - 2014	2014 - 2018
	773	384	389
	96	61	35
S	42	30	12
	45	33	12

- Fermi-LAT is providing valuable observations to understand particle acceleration, transport and gamma-ray emission in Solar Flares;
- Comprehensive study of high-energy solar flares ongoing: toward the first LAT catalog of high-energy solar flares covering Cycle 24
 - Distinct phases observed (prompt vs delayed);
 - Prompt emission observed during on-disc flares suggests acceleration at the flare site
 - Correlation with CME stronger than correlation with GOES X-ray peak flux: acceleration at the **CME shock for long duration flares?**
- <u>Behind the limb flares: acceleration site likely to be the CME shock, as suggested by Cliver et al.</u> (1993), Pesce-Rollins et al. (2015), and Plotnikov et al. (2017)
- Population studies with CME and X-ray flares:

 - Gamma-ray flare duration better correlates with CME speed than X-ray peak flux; - North-south asymmetry also suggest better correlation with CME generating active regions;

NASA

Solar Energetic Particles (SEP), Solar Modulation and Space Radiation: New Opportunities in the AMS-02 Era #3

www.nasa.gov/fermi

- The sun is a steady, faint source of gamma-rays (produced by the interactions of CR with the solar atmosphere and with the solar radiation field);
- High-energy emission (up to GeV) has been observed during solar flares:
 - In the past decades, only two long-lived (hours long) gamma-ray emissions were observed by EGRET (e.g. Kanbach et al., 1993, Ryan et al. 2000)
 - It was unclear where, when, how the high-energy (HE) particles responsible for gamma-ray emission are accelerated
 - EGRET was saturated during the brightest emission
 - No precise localization available

Particle acceleration and gamma-ray emission in solar flares

Accelerated protons and ions must interact in high dense region

(above the photosphere) to produce gammarays via pion decay

- **Trap-precipitation** of HE particles produced during the impulsive phase via magnetic reconnection (Kanbach et al. 1993);
- softer as turbulence weakens; In coulomb collision, the trap efficiency increases with energy, and a Can explain the spectral evolution seen; gradual hardening of the spectrum is expected;
- Not observed during the sustained emission;

- Continuous acceleration at flare reconnection region via Stochastic acceleration (Petrosian & Liu 2004);
- Accelerated particle spectra become

In both these scenarios the highenergy gamma-ray emission is spatially close to the active region that produced the X-ray flare

- a) Prompt emission: temporally correlated with the HXR emission
 - proton injection at the flare site, precipitation, emission consistent with the foot-points
 - Occulted in behind the limb flares
- b) Emission at the loop top
 - acceleration at the loop top, trapping
 - visible in behind the limb (if loop is large enough) (see Vahe Petrosian talk)
- c) Acceleration at the CME shock
 - Acceleration at the shock front (~2 solar radii)
 - Trapping and precipitation along large field lines
 - Explain BTL flares (as in Cliver et al., 1993)
 - Correlation with SEP

Particle Acceleration & gamma-ray emission in Solar Flares

Omodei et al. 2015 (arXiv:1502.03895)

Nicola Omodei – Stanford/KIPAC

The Likelihood analysis and the "Light bucket" by Share et al.

Gamma-ray Space Telescope 2011-03-07 + Likelihood - Flux 🛃 Likelihood - Flux UL 03-07 00 03-07 06 03-07 12 03-07 18 03-08 00 03-08 06 03-08 12 03-08 18 03-09 00 03-09 06 03-09 12 2011-00-0 Light Bucket - Flux Likelihood - Flux Likelihood - Flux U 06-06 15 06-06 21 06-07 03 06-07 09 06-07 15 06-07 21 06-08 03 06-08 09 2011-09-08 Light Bucket - Flux 10-Likelihood - Flux Likelihood - Flux U Ă 10^{−6} 09-07 18 09-07 20 09-07 22 09-08 00 09-08 02 09-08 04 09-08 06 09-08 08 09-08 10 09-08 12 2012-05-17 Light Bucket - Flux Likelihood - Flux Likelihood - Flux UL

Dermi

05-16 15 05-16 19 05-16 23 05-17 03 05-17 07 05-17 11 05-17 15 05-17 19 05-17 23 05-18 03

• The "light bucket" has some issues: largely overestimated)

Fermi Symposium

- The background is not fitted (and therefore the flux for dim flares is

- The exposure is calculated with an assumed (not fitted) spectral model: • this can explain the discrepancy saw with bright fluxes

Longest emission

Exclude the intervals when the sun is more off-axis \bullet – Correction for the fish-eye effect critical

Sermi

Gamma-ray

Space Telescope

Fermi Symposium

SOL 2017-09-10 localization

We cannot exclude that the source moved behind the limb -> Spatially extended emission?

- Pesce Rollins et al. 2015, Ackermann et al., 2017
- i.e. Vestrand & Forrest 1993, Barat et al. 1994, Vilmer et al. 1999,...

• Fermi-LAT is providing detections of >100MeV emission from footpoint occulted flares;

• Gamma-ray emission up to 100 MeV has been detected before from behind-the-limb flares:

Nicola Omodei – Stanford/KIPAC

- 10° behind the eastern limb;
- RHESSI emission consistent with loop top;

Pesce Rollins et al. 2015, Ackermann et al., 2017

Fermi Symposium

detected;

SEP particles with E>=700 MeV

Nicola Omodei – Stanford/KIPAC

• Bright LAT emission lasting ~2 hr;

 10^{-2} S \sim 10^{-3} L 10⁻⁴

Association with fast CME

10:00 CME speed ~ 1900 km s⁻¹ 193: 09/01

Long gamma-ray emission often associated with fast CME & SEP

Gamma-ray Space Telescope

Sermi

Fermi Symposium

- All but one FLSFs with a long lacksquaredelay rank with a CME of speed greater than 1200 km/s
- All flares with a Prompt only lacksquarecomponent rank below that limit.
- Wider range of behavior in the lacksquareFLSFs with a delayed emission component shorter than 2 hours
- Non-detected X-class flares \bullet (grey) All but one are associated with slow CMEs, (4 are not associated with any CME)

GOES peak/CME speed

Also reported by Winter et al., 2018

Duration of gamma-rays from GOES start (hrs)

