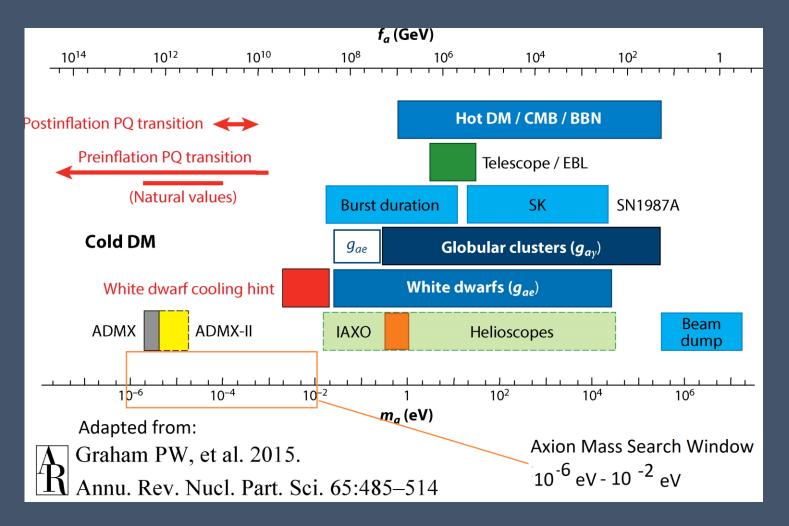
Constraining Axion Mass through Gamma-Ray Observations of Pulsars

Sheridan Lloyd, Anthony Brown, Paula Chadwick University of Durham

sheridan.j.Lloyd@durham.ac.uk

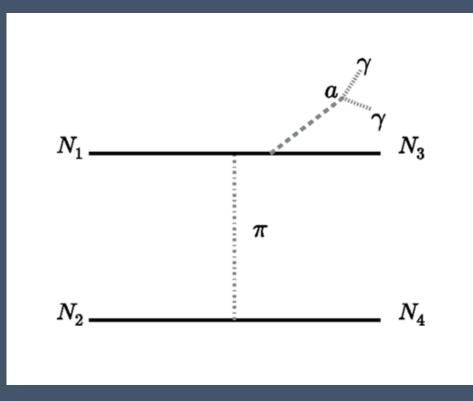
Synopsis

- Axions properties , detection and production from pulsars
- We use a model from Berenji et al (2016) to set limits on axion mass using gamma-ray observations of 18 pulsars
- We consider effect of lower pulsar core temperatures on that model
- Consider an energy loss rate method to determine UL axion mass m_a
- Conclusion and future work


Axion Properties

- Axions are a dark matter candidate long lived, weakly interacting
- The axion can acquire a mass m_a through interactions with neutral pions given by :

$$m_a = {6.0 \ {
m eV} \over f_a/10^6 \ {
m GeV}}$$
 Eqn 1 f_a is the axion decay constant or Peccei-Quinn Scale


 Photons and axions can interconvert in B and E fields ⇒ direct detection experiments e.g. CAST – Solar axions converting to X-rays, probes m_a < 0.02 eV and ADMX – Galactic halo axions converting to microwaves 1.9 -3.5 μeV Constraining axion mass through gamma-ray observations of pulsars – 8th Fermi Symposium – S Lloyd

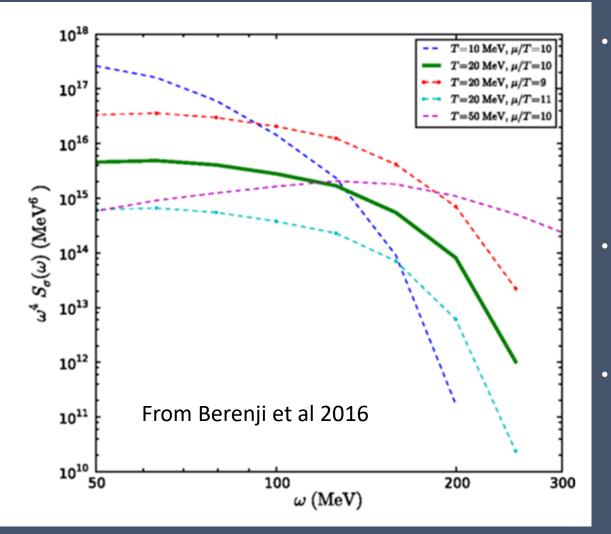
Axion Detection Search Space

Axion Emission from Pulsars

Mechanism - Nucleon nucleon Bremsstrahlung, one pion exchange, axion *a* decays to 2 gamma-ray photons

PSR Axion Emissivity (Hanhart et al 2001)

A Spin structure function $S\sigma(\omega)$ allows for balanced energy and momentum transfer of nucleons via Bremsstrahlung:


$$S_{\sigma}(\omega) = \int \left[\prod_{i=1,\dots,4} \frac{d^3 p_i}{(2\pi)^3} \right] (2\pi)^4 \delta^3 \left(\mathbf{p_1} + \mathbf{p_2} - \mathbf{p_3} - \mathbf{p_4} \right) \\ \times \delta(E_1 + E_2 - E_3 - E_4 - \omega) \mathcal{F} \frac{1}{s} \mathcal{H}_{ii} \qquad \text{Eqn 2}$$

($H_{ii} \approx 10/\omega^2$, F is product of thermodynamic functions)

Axion emissivity ε_a is analogous to neutrino emissivity where ω is the axion energy, M is nucleon mass and g_{ann} is axionnucleon coupling (10^{-8} (m_a/eV):

$$\mathcal{E}_a = \frac{g_{\rm ann}^2}{16\pi^2 M^2} \frac{1}{3} \int d\omega \,\omega^4 \, S_\sigma(\omega) \qquad \text{Eqn 3}$$

Axion Emissivity vs Energy

- Berenji et al (2016)
 uses analytic
 simplification
 (Hannestad and Raffelt
 1998) to numerically
 evaluate phase space
 integral
- Higher NS temperatures increase emission of higher energy axions and γ γ
- Berenji et al choose green line for their analysis, PSR core Temp = 20 MeV

Determine Axion Mass using PSRs

• Berenji et al formulate an astrophysical gamma-ray flux model based on axion emission rate / decay:

$$E\frac{d\Phi}{dE} = 1.8 \times 10^{-2} \left(\frac{m_a}{\text{eV}}\right)^5 \left(\frac{\Delta t}{23.2 \text{ s}}\right) \left(\frac{100 \text{ pc}}{d}\right)^2$$
$$\times \left(\frac{2E}{100 \text{ MeV}}\right)^4 \left(\frac{S_\sigma(2E)}{10^7 \text{MeV}^2}\right) \text{ cm}^{-2} \text{ s}^{-1}.$$
Berenji et al 2016

- Model is then used predict spectral energy distribution (SED) of expected differential photon flux
- They use Fermi-LAT observations of 4 nearby gamma-ray dark pulsars to get a normalisation of this SED model and from normalisation to power 1/5 obtain UL m_a = 0.079 eV

Our Refined *Fermi*-LAT Analysis

Berenj 2016:

- Fermi-LAT Pass 7 data release
- 2 FGL Catalogue
- 4 pulsars <0.4 kpc
- 5 years of event data
- Unbinned analysis
- Free sources within 10°
- Use own MINOS calculation of pulsar flux 95 % flux upper limits

Our analysis:

- Pass 8 (Improves PSF / 60 MeV)
- 3FGL Catalogue + Source Detection
- 18 gamma-dark PSRs <0.5 kpc
- 9 years of event data
- Binned analysis 4 bins / decade
- Free sources within 13°
- Use fermipy source attribute flux_UL95, the 95 % confidence limit on photon flux integrated over analysis range
- Conservative for low energy as used in Lloyd et al 2018 for Globular Cluster analysis

Our calculation of UL Axion Mass

We re-arrange the Berenji model to get UL axion mass m_a in terms of upper limit photon flux and spin structure functions (Eqn 5)

$$m_a = \left| flux_UL95 \times 55.5 \times \left(\frac{d}{100 \ pc}\right)^2 \left(\frac{100 \ MeV}{2E}\right)^4 \left(\frac{10^7 \ MeV}{S\sigma(2E)}\right) \right|^3$$

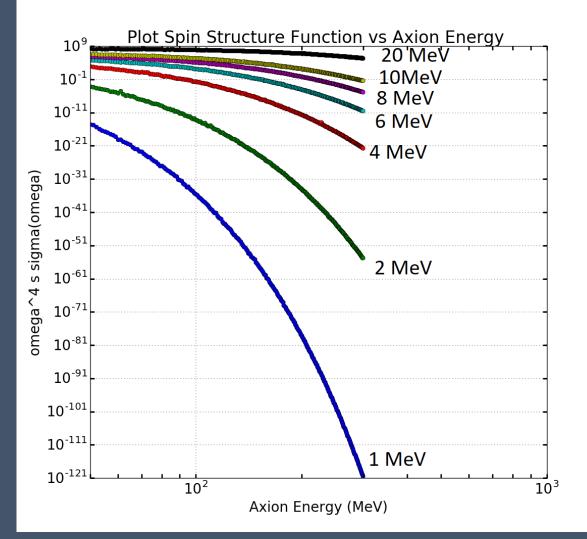
- We consider two axion energies 100 MeV and 200 MeV
- Lookup Sσ(ω) from axion emissivity plot for these axion energies
- Then determine a UL axion mass from UL photon fluxes for our pulsars

UL Axion Mass m_a for $\omega = 100$ MeV

PSR Sample and Count	UL Axion Mass /eV
All pulsars (18)	0.0098
Omit >3σ Possible Detections (13)	0.0086
Berenji Pulsars Only (4)	0.0098

8 to 9 fold improvement on Berenji $m_a < 0.079 \text{ eV}$

UL Axion Mass m_a for ω =200 MeV


PSR Sample and Count	UL Axion Mass /eV
All pulsars (18)	0.0326
Omit >3σ Possible Detections (13)	0.0289
Berenji Pulsars Only (4)	0.0329

More modest twofold improvement on Berenji $m_a < 0.079 \text{ eV}$

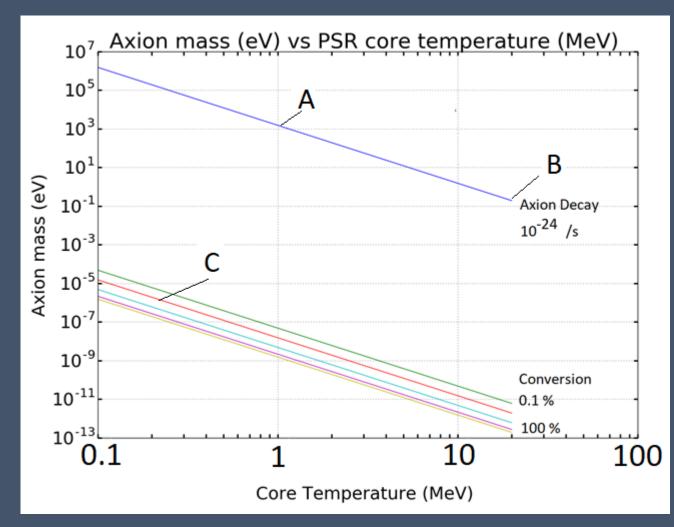
Reconsider PSR Core Temperature

- Axion emission has strong temperature dependence $\approx T^6 \Rightarrow$ leads us to examine more closely the PSR temperature used
- 20 MeV PSR core temperature used by Berenji et al cites phase diagram of quark core hybrid stars (Rüster et al 2005) along with quark core slow cooling (Negreiros et al 2012) and crustal heating due to superfluidity (Larson and Link 1999) along with Akmal et al 1998 (T_F=20 MeV)
- T_c =20 MeV appears a high temperature choice more consistent with cores v. shortly after supernova event (peak T_c 10-30 MeV at 150 ms Sumiyoshi et al 2005)
- PSR core cools to \approx 1-2 MeV in seconds (Pons et al 1999, Nakazato et al 2018 , Zhu et al 2018)

Sσ(ω) at Lower PSR Core Temperatures

- Axion emissivity
 is much
 reduced with
 lower PSR core
 temperature T_c
- Reducing T_c
 from 20 MeV to
 4 MeV lowers
 ω⁴ Sσ(ω) and
 hence axion
 emissivity by
 factor of x10⁹

ullet


UL Axion Mass from Energy Loss Rate

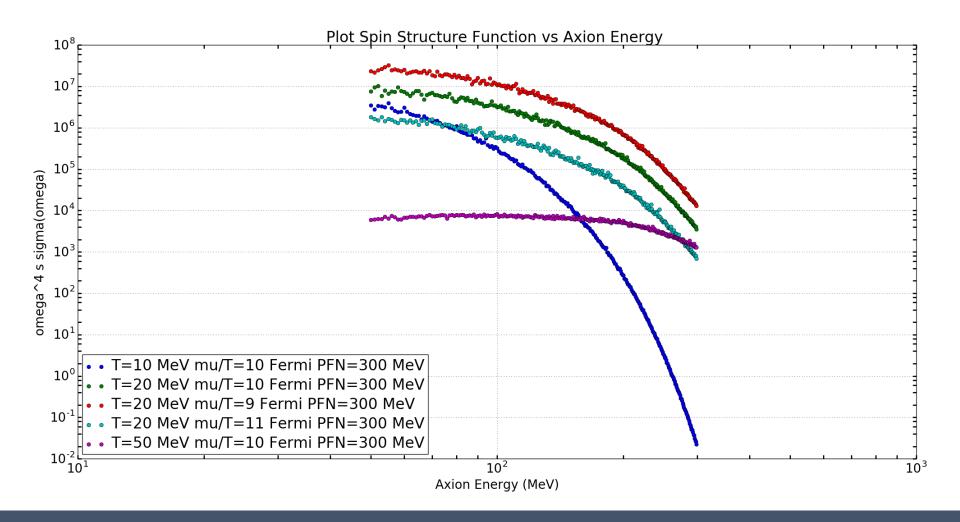
 Axion power equation – Raffelt 1996, from Iwamoto 1984 and Brinkmann and Turner 1988. Can apply canonical NS values, strong temperature dependence

$$\epsilon_a^{\rm D} = \alpha_a \, 1.74 \times 10^{31} \, {\rm erg} \, {\rm g}^{-1} \, {\rm s}^{-1} \, \rho_{15}^{-2/3} \, T_{\rm MeV}^6 \qquad {\rm Eqn} \, 6$$

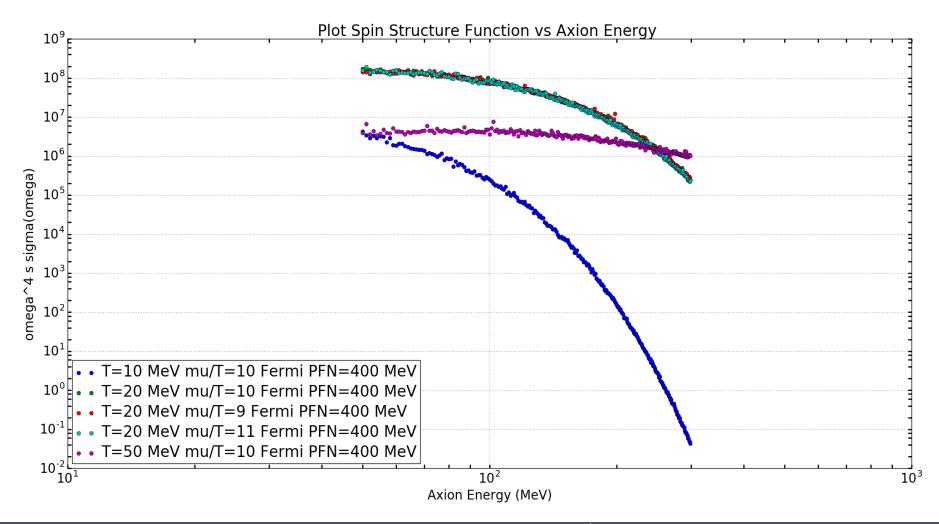
- Here α_a is axion/nucleon FSC = (C_N M / f_a)² / 4 π
- C_N model dependent coupling constant of order unity
- Can derive total luminosity and relate this to UL energy flux eflux_ul95 for our 18 pulsars
- Can obtain f_a and thus determine UL axion mass

Axion Photon Conversion and UL m_a

(A)-Axion decay alone yields too heavy axions


(B)- At $T_c = 20$ MeV UL $m_a = 0.2$ eV consistent with Berenji

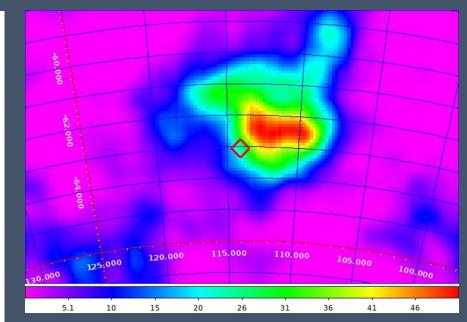
(C)- Low T_c and/or low conversion needed to keep UL $m_a > 10^{-6}$ eV


Conclusion and Future Work

- We analyse 18 gamma-ray dark pulsars using 9 years of Fermi-LAT pass 8 data
- We use these obs and Berenji et al model to calculate upper limit axion mass of 0.0098 eV for axion energy 100 MeV and 0.0326 eV for axion energy 200 MeV
- We extrapolate spin structure function to realistic PSR core temperatures of 1 MeV and show axion emissivity is much reduced
- We derive UL axion masses using the Raffelt axion power equation and show low T_c and low $a \rightarrow \gamma \gamma$ conversion (but greater then conservative decay) needed to obtain plausible m_a
- Our future work will seek to quantify $a \rightarrow \Upsilon \Upsilon$ in PSR B field regime using Fortin and Sinha 2018 modelling work on Magnetars

BACKUP – Spin Structure Low PFN

BACKUP – Spin Structure High PFN



BACKUP – PSR Selection ATNF

PSRJ	Gl (deg)	Gb (deg)	P0 (s)	EDOT (ergs/s)
J0108-1431 J0452-1759 J0459-0210 J0536-7543 J0630-2834	140.930 217.078 201.444 287.162 236.952	-76.815 -34.087 -25.678 -30.821 -16.758	1.133076 1.245856	5.77e+30 1.37e+33 3.79e+31 1.15e+31 1.46e+32
J0636-4549 J0656-5449 J0700+6418 J0709-5923 J0736-6304 J0814+7429 J0826+2637 J0837+0610 J0953+0755 J1116-4122 J1136+1551 J2222-0137 J2307+2225	254.547 264.795 151.551 270.029 274.881 139.998 196.963 219.721 228.908 284.451 241.902 62.018 93.570	-21.547 -21.141 25.237 -20.899 -19.153 31.618 31.742 26.272 43.697 18.069 69.195 -46.075 -34.458	0.183157 0.195671 0.485268 4.862874 1.292241 0.530661 1.273768 0.253065 0.943158 1.187913	1.60e+31 2.05e+32 3.61e+30 4.35e+31 5.21e+31 3.08e+30 4.52e+32 1.30e+32 5.60e+32 3.74e+32 8.79e+31 6.48e+30 2.23e+30
dist <0.5 && (gb > 15 gb < -15) && (gl < 330 && gl > 30) && p0 > 0.03 && edot>0 and omit known gamma-ray emitter J1836+5925				

BACKUP – Analysis Results

GRD Pulsar	SOURCE TS 60 - 500 MeV 4 BIN PD PL model	Berenji 2016
J0108-1431	0	Y
J0452-1759	0	
J0459-0210	10	
J0536-7543	0	
J0630-2834	19	Y
J0636-4549	3	
J0656-5449	0	
J0700+6418	0	
J0709-5923	12	
J0814+7429	0	
J0826+2637	2	
J0837+0610	0	
J0953+0755	2	Y
J1116-4122	1	
J1136+1551	0	Y
J2222-0137	0	
J2307+2225	14	
J0736-6304	33	
J1836+5925	2	

- J0736-6304 TS Map Not a detection, placing test sources at other positions probes this map
- If we don't add any test source this feature disappears – an artifact of normalisation of Galactic background

BACKUP m_a Calc ω =100 MeV

Source	flux_UL95 cm-2 s-1	All PSRs UL Axion Mass /eV	Omit > 3 sigma Possible Detections	Berenji Pulsars Only	TS
			Detectione		
GRD_PSR_J0536-7543	2.22E-09	0.0043	0.0043		0
GRD PSR J0108-1431	1.75E-09	0.0052			0
GRD_PSR_J0452-1759	3.07E-09				0
GRD PSR J0459-0210	1.72E-08	0.0093			10
GRD_PSR_J0630-2834	1.89E-08			0.0153	20
GRD_PSR_J0636-4549	1.31E-08	0.0152			5
GRD_PSR_J0656-5449	3.25E-09	0.0094	0.0094		0
GRD_PSR_J0700+6418	1.65E-09	0.0080	0.0080		0
GRD_PSR_J0709-5923	1.03E-08	0.0138			13
GRD_PSR_J0814+7429	2.31E-09	0.0093	0.0093		0
GRD_PSR_J0826+2637	3.94E-09	0.0091	0.0091		3
GRD_PSR_J0837+0610	2.73E-09	0.0057	0.0057		0
GRD_PSR_J0953+0755	4.75E-09	0.0084	0.0084	0.0084	3
GRD_PSR_J1116-4122	9.00E-09	0.0109	0.0109		1
GRD_PSR_J1136+1551	5.00E-09	0.0104	0.0104	0.0104	0
GRD_PSR_J2222-0137	2.06E-09	0.0065	0.0065		0
GRD_PSR_J2307+2225	1.12E-08	0.0171			15
GRD_PSR_J0736-6304	2.68E-08	0.0079			34
	Average UL axion mass eV	0.0098	0.0086	0.0098	
	x Improvement on Berenji				
	0.079 eV→	8.10	9.16	8.03	

A 7 to 8 fold improvement on 0.079 eV axion mass of Berenji et al

BACKUP m_a Calc ω =200 MeV

Gamma Ray Dark PSR	flux_UL95 cm-2 s-1	UL Axion Mass All PSR	UL Axion Mass Without > 3 sigma Possible Detections	Berenji Pulsars Only	TS
GRD_PSR_J0536-7543	2.22E-09	0.0145	0.0145		0
GRD_PSR_J0108-1431	1.75E-09	0.0175	0.0175	0.0175	
GRD_PSR_J0452-1759	3.07E-09	0.0324	0.0324		0
GRD_PSR_J0459-0210	1.72E-08	0.0313			10
GRD_PSR_J0630-2834	1.89E-08	0.0512		0.0512	20
GRD_PSR_J0636-4549	1.31E-08	0.0508	0.0508		5
GRD_PSR_J0656-5449	3.25E-09	0.0314	0.0314		0
GRD_PSR_J0700+6418	1.65E-09	0.0268	0.0268		0
GRD_PSR_J0709-5923	1.03E-08	0.0462			13
GRD_PSR_J0814+7429	2.31E-09	0.0310	0.0310		0
GRD_PSR_J0826+2637	3.94E-09	0.0304	0.0304		3
GRD_PSR_J0837+0610	2.73E-09	0.0190	0.0190		0
GRD_PSR_J0953+0755	4.75E-09	0.0281	0.0281	0.0281	3
GRD_PSR_J1116-4122	9.00E-09	0.0366	0.0366		1
GRD_PSR_J1136+1551	5.01E-09	0.0349	0.0349	0.0349	0
GRD_PSR_J2222-0137	2.06E-09	0.0218	0.0218		0
GRD_PSR_J2307+2225	1.12E-08	0.0572			15
GRD_PSR_J0736-6304	2.68E-08	0.0265			34
	UL Axion Mass /eV->	0.0326	0.0289	0.0329	
	x Improvement on 0.079				
	eV	2.42	2.74	2.40	

A more modest 2 fold improvement on 0.079 eV axion mass of Berenji et al

BACKUP THERMODYNAMIC FUNCTIONS

constant. The function $\mathcal{F}(E_1, E_2, E_3, E_4; \mu; T)$ is given by a product of thermodynamic functions:

$$\mathcal{F} = f(E_1)f(E_2)(1 - f(E_3))(1 - f(E_4)), \qquad (4)$$

where $f(E) = 1/(1 + \exp((E - \mu)/T))$. Thus we see that μ , the neutron star degeneracy [9], and T, the core temperature of the neutron star are additional parameters of the model, which may vary with the neutron star source. We assume values of $\mu/T \simeq 10$ and T = 20 MeV. These

From Berenji et al 2016

BACKUP ANALYSIS DESCRIPTION

- Use Fermipy and Fermi Science Tools (v10R0p5) source photons / front events 60-500 MeV
- Create source maps for 3FGL sources and exposure cube
- Add GRD PSR PL test point source to model with index 2
- Disable energy dispersion on 3FGL and isodiff / galdiff and enable energy dispersion on PSR test source
- Use *optimize* method to perform binned likelihood analysis followed by secondary likelihood analysis with *fit*
- Delete sources from model with TS <=4 and npred <=1
- Free prefactor (normalisation) 3FGL sources within 13^o of PSR and prefactor/index of test PSR source
- *Optimize* all sources with TS>25 and *fit* again
- Run Find_sources and fit again