## **Observation of Extended PWNe with HAWC**



A CONTRACTOR OF A CONTRACTOR OF

Andrew Smith — University of Maryland, College Park for the HAWC Collaboration Fermi Symposium 2018, Baltimore, MD









## HAWC Longitude: 97°18.6'W



#### Pico de Orizaba 5636 m a.s.l.



Sierra Negra Large Millimetric Telescope 4640 m a.s.l.

#### HAWC 4100 m a.s.l.





## HAWC: High Altitude Water Cherenkov



300 close-packed optically isolated water Cherenkov detectors Construction began early 2012 Full detector inaugurated March 2015 Funding from a combination of US and Mexican agencies High energy extension: Outrigger array, since summer 2018



#### Water Cherenkov Detectors

**Light-blocking** Purified dome water **Particle path** 

Watertight liner Photosensors Steel water tank



## **Shower reconstruction**

- Measure: time and light level in each PMT.
- Reconstruct: direction, location, energy, and background rejection.
- Reference: Crab paper, ApJ 843 (2017), 39.



A.J. Smith | Fermi Symposium 2018

#### ch PMT. ergy, and background rejection. 017), 39.

## **Shower reconstruction**

- Measure: time and light level in each PMT.
- Reconstruct: direction, location, energy, and background rejection.
- Reference: Crab paper, ApJ 843 (2017), 39.



#### Smooth: gamma-like SFCF Fit PINC Moving Average $<\zeta>$ $Q_{eff}$ $\log_{10}(\mathsf{Q}_{eff})$ 0 140 80 100 120 140 20 40 60 PMT Distance to Reconstructed Core [m]



### Source search and characterization

- Likelihood framework use *n* maps to test the presence of sources then characterize them. ≻
- Reference: Crab paper, ApJ 843 (2017), 39.



A.J. Smith | Fermi Symposium 2018

Events sorted by "size" in n bins (with characteristic Point Spread Function, S/N ratio, energy), make n maps.

![](_page_8_Figure_8.jpeg)

![](_page_8_Picture_9.jpeg)

## HAWC 3.5 year skymap — 1128d livetime: 2014-11 to 2018-04

Mrk 421

![](_page_9_Picture_2.jpeg)

0

Q2 0

#### Inner galactic plane

2HWC catalog (ApJ 2017) was 507 days, with 39 sources of which 10 were new.

## PRELIMINARY

Geminga & B0656+14

![](_page_9_Picture_7.jpeg)

![](_page_9_Picture_8.jpeg)

## **2HWC Catalog**

- > 2HWC Catalog (ApJ, Volume 843, Issue 1, article id. 40, 21 pp. 2017)
- Searched for distinct local significant excesses in observable sky.
  - Search for Point Sources and Extended Sources of size 0.5°, 1.0°, 2.0°
  - ► 507 days of data.
  - previously identified TeV sources.
  - Tool online for public access:
- We now have 1128 days of data
  - Report new interesting sources as ATel's.

Identified 39 gamma-ray sources, 19 of which were not associated with

https://data.hawc-observatory.org/datasets/2hwc-survey/index.php

## Inner Galactic plane — 507d livetime (2014-11 to 2016-06)

![](_page_11_Figure_1.jpeg)

#### C. Rivière | HAWC Highlights

![](_page_11_Picture_4.jpeg)

![](_page_11_Picture_5.jpeg)

![](_page_11_Picture_6.jpeg)

## Inner Galactic plane — 1128d livetime (2014-11 to 2018-04)

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_4.jpeg)

![](_page_12_Picture_5.jpeg)

![](_page_12_Picture_6.jpeg)

## Inner Galactic plane — H.E.S.S. Galactic plane survey (A&A 2018)

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_3.jpeg)

![](_page_13_Picture_4.jpeg)

## Inner Galactic plane — 1128d livetime (2014-11 to 2018-04)

![](_page_14_Figure_1.jpeg)

![](_page_14_Picture_4.jpeg)

![](_page_14_Picture_5.jpeg)

![](_page_14_Picture_6.jpeg)

## Inner Galactic plane — Fermi-LAT 3FHL (<u>arXiv:1702.00664</u>)

![](_page_15_Figure_1.jpeg)

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_4.jpeg)

## Geminga and B0656+14

- > Originally identified as a TeV Source by Milagro, a predecessor to HAWC.
- the positron excess seen by PAMELA and AMS.

#### **Milagro Point Source Map**

![](_page_16_Figure_5.jpeg)

![](_page_16_Figure_6.jpeg)

#### A.J. Smith | Fermi Symposium 2018

Geminga is and extremely close (250pc) and middle-aged pulsar (342ky).

## Yuksel, Kistler, Stavev postulated that positrons from Geminga could explain

## Milagro - 1 Deg Extent - Geminga 10098 96 α[°] 0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0 sigma

Milagro Extended Source Map

![](_page_16_Figure_12.jpeg)

## Geminga and B0656+14

- Much larger than x-ray PWN
- to CR diffusion and propagation.

![](_page_17_Figure_4.jpeg)

HAWC detects Geminga and B0656+14 at high significance as highly extended sources.

Fit extension of observed TeV gamma-rays to a model describing the extension as due

![](_page_17_Picture_8.jpeg)

#### Geminga and B0656+14

![](_page_18_Figure_1.jpeg)

A.J. Smith | Fermi Symposium 2018

![](_page_18_Figure_5.jpeg)

![](_page_18_Picture_6.jpeg)

## Linden et al....

- Linden, T. et al (Phys. Rev. D 96, 103016). Pointed out that HAWC sees nearby high flux pulsars.
- Should see more.
- Notes that the TeV signature is a large (~10pc), spatially distinct from the SNR and from the X-ray PWN shock.
- Coined term "TeV Halo" to these objects and suggested the size is a compromise between diffusion of PWN accelerated  $\sim 10-100$  TeV electron cooling time.
- Middle-age Pulsars (100-400ky) should all be "Geminga-like"
- Suggests that HAWC could even identify un-aligned Pulsars that are poorly aligned for radio detection.

![](_page_19_Picture_8.jpeg)

![](_page_19_Figure_9.jpeg)

| me  | Dec. ( $^{\circ}$ ) | Distance (kpc) | Age (kyr) | Spindown Lum. (erg $s^{-1}$ ) | Spindown Flux (erg s <sup><math>-1</math></sup> kpc <sup><math>-2</math></sup> ) | 2    |
|-----|---------------------|----------------|-----------|-------------------------------|----------------------------------------------------------------------------------|------|
| 746 | 17.77               | 0.25           | 342       | 3.2e34                        | 4.1e34                                                                           | 2HWC |
| 14  | 14.23               | 0.29           | 111       | 3.8e34                        | 3.6e34                                                                           | 2HWC |
| 32  | 32.87               | 3.00           | 107       | 3.7e36                        | 3.3e34                                                                           |      |
| 000 | 10.00               | 1.23           | 114       | 2.3e35                        | 1.2e34                                                                           |      |
| )11 | 10.18               | 4.61           | 169       | 2.9e36                        | 1.1e34                                                                           | 2HWC |
| 952 | -9.86               | 3.68           | 128       | 1.1e36                        | 6.4e33                                                                           | 2HWC |
| 127 | 41.45               | 1.70           | 181       | 1.7e35                        | 4.7e33                                                                           | 2HWC |
| )9  | -9.58               | 0.30           | 232       | 4.6e33                        | 4.1e33                                                                           |      |
| )8  | -8.45               | 4.50           | 147       | 5.8e35                        | 2.3e33                                                                           |      |
| 904 | 9.07                | 3.00           | 147       | 1.6e35                        | 1.4e33                                                                           |      |
| 23  | 23.48               | 1.56           | 253       | 4.1e34                        | 1.4e33                                                                           |      |
|     |                     |                |           |                               |                                                                                  |      |

## These objects are not spatially coincident with X-Ray PWN, or SNR!

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

#### Posselt et al, arXiv:1611.03496 Chandra

A.J. Smith | Fermi Symposium 2018

#### B0565+14 SNR - "Monogem Ring"

![](_page_20_Figure_6.jpeg)

#### Thorsett et al, ApJ 592:L71-L73, 2003 ROSAT

## Search for this new class of objects

- Middle-aged pulsars
  - > Age > 20-100ky  $\sim$  = cooling time Halo in steady state
  - ► Size ~10 pc
  - Flux ~Spin-down power/d<sup>2</sup>
  - Very large extended objects when source is nearby
- Issues:

  - out extended sources.
- Two Approaches:
  - on known distance, P-dot.
  - source, 0.5°, 1.0°, 2.0°) "Blind Search"

A.J. Smith | Fermi Symposium 2018

 $\succ$  HAWC only observes declinations within +/-40 deg of instrument latitude, 19°N. Galactic plane is a confused region with many extended emitters. Hard to pull

1 - Look at ATNF (&Fermi) catalog of and search for extended emission based

2 - Search HAWC data for extended Halos on several spatial scales (Point)

![](_page_21_Picture_19.jpeg)

## **ATNF Catalog**

#### ATNF catalog selecting pulsars not in HAWC visible plan (I=[0,90] && b=[-4,4]), and in HAWC favorable declination [-11°,49°] Age in [40ky,1000ky]

| <br># | NAME       | PSRJ              | RAJ<br>(hms) | DECJ<br>(dms) | P0<br>(s) | Gl<br>(deg) | Gb<br>(deg) | AGE<br>(Yr) | DIST<br>(kpc) | EDOT<br>(ergs/s) | EDOT/DIST^  |
|-------|------------|-------------------|--------------|---------------|-----------|-------------|-------------|-------------|---------------|------------------|-------------|
| 1     | J0633+1746 | J0633+1746        | 06:33:54.1   | +17:46:12.9   | 0.237099  | <br>195.134 | <br>4.266   | 3.42e+05    | 0.19          | <br>3.25e+34     | 8.864266e+3 |
| 2     | B0656+14   | <b>J0659+1414</b> | 06:59:48.1   | +14:14:21.5   | 0.384891  | 201.108     | 8.258       | 1.11e+05    | 0.29          | 3.81e+34         | 4.518430e+3 |
| 3     | J1740+1000 | <b>J1740+1000</b> | 17:40:25.9   | +10:00:06.3   | 0.154087  | 34.011      | 20.268      | 1.14e+05    | 1.23          | 2.32e+35         | 1.520259e+3 |
| 4     | J0633+0632 | J0633+0632        | 06:33:44.2   | +06:32:34.9   | 0.297395  | 205.093     | -0.932      | 5.92e+04    | 1.35          | 1.19e+35         | 6.584362e+3 |
| 5     | J0631+1036 | J0631+1036        | 06:31:27.5   | +10:37:02.5   | 0.287800  | 201.219     | 0.450       | 4.36e+04    | 2.10          | 1.73e+35         | 3.854875e+3 |
| 6     | J0538+2817 | J0538+2817        | 05:38:25.0   | +28:17:09.1   | 0.143158  | 179.719     | -1.686      | 6.18e+05    | 1.30          | 4.94e+34         | 2.899408e+3 |
| 7     | B0611+22   | <b>J0614+2229</b> | 06:14:17.1   | +22:30:36     | 0.334960  | 188.785     | 2.400       | 8.93e+04    | 1.74          | 6.24e+34         | 2.047827e+3 |
| 8     | B0540+23   | J0543+2329        | 05:43:09.6   | +23:29:05     | 0.245975  | 184.363     | -3.318      | 2.53e+05    | 1.56          | 4.09e+34         | 1.684747e+3 |
| 9     | J1846+0919 | J1846+0919        | 18:46:26.0   | +09:19:46     | 0.225551  | 40.693      | 5.342       | 3.60e+05    | 1.53          | 3.41e+34         | 1.452433e+3 |
| 10    | J0357+3205 | J0357+3205        | 03:57:52.5   | +32:05:25     | 0.444104  | 162.760     | -16.006     | 5.40e+05    | 0.83          | 5.88e+33         | 8.564378e+3 |
| 11    | B0919+06   | J0922+0638        | 09:22:14.0   | +06:38:23.3   | 0.430627  | 225.420     | 36.392      | 4.97e+05    | 1.10          | 6.79e+33         | 5.619835e+3 |
| 12    | J1816-0755 | <b>J1816-0755</b> | 18:16:24.5   | -07:55:22.5   | 0.217643  | 21.867      | 4.092       | 5.32e+05    | 3.13          | 2.48e+34         | 2.551828e+3 |
| 13    | J0627+0706 | J0627+0706        | 06:27:44.2   | +07:06:12.7   | 0.475874  | 203.907     | -1.993      | 2.53e+05    | 2.29          | 1.09e+34         | 2.097595e+3 |
| 14    | J1839+15   | J1839+15          | 18:39:00     | +15:00:00     | 0.549161  | 45.014      | 9.477       | 3.33e+05    | 3.43          | 6.23e+33         | 5.269913e+3 |
| 15    | J0658+0022 | J0658+0022        | 06:58:15.2   | +00:22:35.3   | 0.563295  | 213.374     | 1.688       | 9.75e+05    | 2.36          | 2.02e+33         | 3.590922e+3 |
| 16    | J1954+3852 | J1954+3852        | 19:54:01.0   | +38:52:15.8   | 0.352933  | 74.043      | 5.699       | 8.47e+05    | 4.67          | 5.93e+33         | 2.705318e+3 |

To do this guided search correctly, we want to optimize analysis assuming a canonical size and distance to optimize the detection probability.

Not ready to report the results here.

A.J. Smith | Fermi Symposium 2018

# 2 2 2

#### HAWC J0543+233

0.5° Smoothing

![](_page_23_Figure_2.jpeg)

A.J. Smith | Fermi Symposium 2018

[ Previous | Next | ADS ]

#### HAWC detection of TeV emission near PSR B0540+23

ATel #10941; Colas Riviere (University of Maryland), Henrike Fleischhack (Michigan Technological University), Andres Sandoval (Universidad Nacional Autonoma de Mexico) on behalf of the HAWC collaboration on 9 Nov 2017; 23:11 UT Credential Certification: Colas Riviere (riviere@umd.edu)

Subjects: Gamma Ray, TeV, VHE, Pulsar

**Tweet Recommend** 5

The High Altitude Water Cherenkov (HAWC) collaboration reports the discovery of a new TeV gamma-ray source HAWC J0543+233. It was discovered in a search for extended sources of radius 0.5° in a dataset of 911 days (ranging from November 2014 to August 2017) with a test statistic value of 36 (6 $\sigma$  pre-trials), following the method presented in Abeysekara et al. 2017, ApJ, 843, 40. The measured J2000.0 equatorial position is RA=85.78°, Dec=23.40° with a statistical uncertainty of 0.2°. HAWC J0543+233 was close to passing the selection criteria of the 2HWC catalog (Abeysekara et al. 2017, ApJ, 843, 40, see HAWC J0543+233 in 2HWC map), which it now fulfills with the additional data.

HAWC J0543+233 is positionally coincident with the pulsar PSR B0540+23 (Edot = 4.1e+34 erg s-1, dist = 1.56 kpc, age = 253 kyr). It is the third low Edot, middle-aged pulsar announced to be detected with a TeV halo, along with Geminga and B0656+14. It was predicted to be one of the next such detection by HAWC by Linden et al., 2017, arXiv:1703.09704.

Using a simple source model consisting of a disk of radius  $0.5^{\circ}$ , the measured spectral index is -2.3  $\pm 0.2$  and the differential flux at 7 TeV is  $(7.9 \pm 2.3) \times 10^{-15}$  TeV-1 cm-2 s-1. The errors are statistical only. Further morphological and spectral analysis as well as studies of the systematic uncertainty are ongoing.

![](_page_23_Figure_12.jpeg)

![](_page_23_Picture_13.jpeg)

#### HAWC J0543+233

0.5° Smoothing

![](_page_24_Figure_2.jpeg)

A.J. Smith | Fermi Symposium 2018

![](_page_24_Figure_4.jpeg)

#### HAWC J0543+233

![](_page_25_Figure_1.jpeg)

A.J. Smith | Fermi Symposium 2018

Extended Source HAWC J0543+233
TS = 36 when reported
Extended with ~0.5°
Spectral Index = -2.3+/-0.2
Flux = (7.9 +/- 2.3) 10e-15 TeV-1 cm-2 s-1 @ 7 TeV

Coincident with ATNF B0540+23
Age = 253ky
Distance = 1.56kpc
Edot = 4.1+34 erg s-1

![](_page_25_Picture_5.jpeg)

## HAWC J0635+070

#### 0.5° Smoothing

![](_page_26_Figure_2.jpeg)

#### HAWC detection of TeV source HAWC J0635+070

ATel #12013; Chad Brisbois (Michigan Technological University), Colas Riviere (University of Maryland), Henrike Fleischhack (Michigan Technological University), Andrew Smith (University) of Maryland) on behalf of the HAWC collaboration on 6 Sep 2018; 14:47 UT

Credential Certification: Colas Riviere (riviere@umd.edu)

Subjects: Gamma Ray, TeV, VHE, Pulsar

**Tweet Recommend** 51

The High Altitude Water Cherenkov (HAWC) collaboration reports the discovery of a new TeV gamma-ray source HAWC J0635+070. It was discovered in a search for extended sources covering 1128 days of HAWC observations with a test statistic value of 27 (>5 $\sigma$  pre-trials), following the method presented in [Abeysekara et al. 2017, ApJ, 843, 40]. Its significance in the 2HWC data set excluded it from being included in the catalog ( $\sim 3.5\sigma$  pre-trials), but with the addition of  $\sim 600$  more days of data it now satisfies that criterion. The best-fit J2000.0 equatorial position is RA=98.71 $\pm$ 0.20°, Dec=7.00 $\pm$ 0.22°, with a Gaussian 1-sigma extent of 0.65° $\pm$ 0.18°.

The spectral energy distribution is well-fit by a power law with spectral index -2.15±0.17. The differential flux at 10 TeV is  $(8.6 \pm 3.2) \times 10^{-15}$  TeV-1 cm-2 s-1. All errors are statistical only; further morphological and spectral analysis as well as studies of the systematic uncertainty are ongoing.

Given its spectrum and morphology, we believe HAWC J0635+070 may be the TeV halo of the pulsar PSR J0633+0632 (Edot = 1.2e+35 erg s-1, dist = 1.35 kpc, age = 59 kyr, unknown proper motion [Manchester et al., 2005, AJ, 129]). The gamma-ray spectrum and morphology is compatible with a "Geminga-like" TeV Halo [Abeysekara et al. 2017, Science, 358, 911; Linden et al., 2017, PRD, 96, 103016]. We encourage follow-up observations at other wavelengths.

![](_page_26_Figure_12.jpeg)

![](_page_26_Figure_13.jpeg)

![](_page_26_Figure_15.jpeg)

![](_page_26_Picture_16.jpeg)

## HAWC J0635+070

#### 0.5° Smoothing

![](_page_27_Figure_2.jpeg)

#### Extended Source HAWC J0635+07

► TS = 27

- Extended with 0.65°+/-0.18°
- Spectral Index = -2.15+/-0.17
- Flux = (8.6 +/- 3.2) 10e-15 TeV-1 cm-2 s-1 @ 10 TeV
- Coincident with ATNF PSR J0633+0632
  - Age = 59ky
  - Distance = 1.35kpc
  - Edot = 1.2e+35 erg s-1
  - Size is compatible with a "Gaminga-Like" object.

![](_page_27_Picture_14.jpeg)

## HAWC J0635+070

#### 1.0° Smoothing

![](_page_28_Figure_2.jpeg)

A.J. Smith | Fermi Symposium 2018

#### Extended Source HAWC J0635+07

► TS = 27

- Extended with 0.65°+/-0.18°
- Spectral Index = -2.15+/-0.17
- Flux = (8.6 +/- 3.2) 10e-15 TeV-1 cm-2 s-1 @ 10 TeV
- Coincident with ATNF PSR J0633+0632
  - Age = 59ky
  - Distance = 1.35kpc
  - Edot = 1.2e+35 erg s-1
  - Size is compatible with a "Gaminga-Like" object.

![](_page_28_Picture_14.jpeg)

## **ATNF Catalog**

#### ATNF catalog selecting pulsars not in HAWC visible plan (I=[0,90] && b=[-4,4]), and in HAWC favorable declination [-11°,49°] Age in [40ky,1000ky]

| <br># | NAME              | PSRJ              | RAJ<br>(hms) | DECJ<br>(dms) | P0<br>(s) | Gl<br>(deg) | Gb<br>(deg) | AGE<br>(Yr) | DIST<br>(kpc) | EDOT<br>(ergs/s) | EDOT/DIST^  |
|-------|-------------------|-------------------|--------------|---------------|-----------|-------------|-------------|-------------|---------------|------------------|-------------|
| 1     | J0633+1746        | J0633+1746        | 06:33:54.1   | +17:46:12.9   | 0.237099  | <br>195.134 | 4.266       | 3.42e+05    | <br>0.19      | <br>3.25e+34     | 8.864266e+3 |
| 2     | B0656+14          | <b>J0659+1414</b> | 06:59:48.1   | +14:14:21.5   | 0.384891  | 201.108     | 8.258       | 1.11e+05    | 0.29          | 3.81e+34         | 4.518430e+3 |
| 3     | J1740+1000        | 740+1000          | 17:40:25.9   | +10:00:06.3   | 0.154087  | 34.011      | 20.268      | 1.14e+05    | 1.23          | 2.32e+35         | 1.520259e+3 |
| 4     | J0633+0632 <      | 2                 | 06:33:44.2   | +06:32:34.9   | 0.297395  | 205.093     | -0.932      | 5.92e+04    | 1.35          | 1.19e+35         | 6.584362e+3 |
| 5     | <b>J0631+1036</b> | J 631+1036        | 06:31:27.5   | +10:37:02.5   | 0.287800  | 201.219     | 0.450       | 4.36e+04    | 2.10          | 1.73e+35         | 3.854875e+3 |
| 6     | J0538+2817        | J0538+2817        | 05:38:25.0   | +28:17:09.1   | 0.143158  | 179.719     | -1.686      | 6.18e+05    | 1.30          | 4.94e+34         | 2.899408e+3 |
| 7     | B0611+22          | <b>5</b> 614+2229 | 06:14:17.1   | +22:30:36     | 0.334960  | 188.785     | 2.400       | 8.93e+04    | 1.74          | 6.24e+34         | 2.047827e+3 |
| 8     | B0540+23 <        | 9                 | 05:43:09.6   | +23:29:05     | 0.245975  | 184.363     | -3.318      | 2.53e+05    | 1.56          | 4.09e+34         | 1.684747e+3 |
| 9     | J1846+0919        | J_846+0919        | 18:46:26.0   | +09:19:46     | 0.225551  | 40.693      | 5.342       | 3.60e+05    | 1.53          | 3.41e+34         | 1.452433e+3 |
| 10    | J0357+3205        | J0357+3205        | 03:57:52.5   | +32:05:25     | 0.444104  | 162.760     | -16.006     | 5.40e+05    | 0.83          | 5.88e+33         | 8.564378e+3 |
| 11    | B0919+06          | J0922+0638        | 09:22:14.0   | +06:38:23.3   | 0.430627  | 225.420     | 36.392      | 4.97e+05    | 1.10          | 6.79e+33         | 5.619835e+3 |
| 12    | <b>J1816-0755</b> | J1816-0755        | 18:16:24.5   | -07:55:22.5   | 0.217643  | 21.867      | 4.092       | 5.32e+05    | 3.13          | 2.48e+34         | 2.551828e+3 |
| 13    | J0627+0706        | J0627+0706        | 06:27:44.2   | +07:06:12.7   | 0.475874  | 203.907     | -1.993      | 2.53e+05    | 2.29          | 1.09e+34         | 2.097595e+3 |
| 14    | J1839+15          | J1839+15          | 18:39:00     | +15:00:00     | 0.549161  | 45.014      | 9.477       | 3.33e+05    | 3.43          | 6.23e+33         | 5.269913e+3 |
| 15    | J0658+0022        | J0658+0022        | 06:58:15.2   | +00:22:35.3   | 0.563295  | 213.374     | 1.688       | 9.75e+05    | 2.36          | 2.02e+33         | 3.590922e+3 |
| 16    | J1954+3852        | J1954+3852        | 19:54:01.0   | +38:52:15.8   | 0.352933  | 74.043      | 5.699       | 8.47e+05    | 4.67          | 5.93e+33         | 2.705318e+3 |

To do this guided search correctly, we want to optimize analysis assuming a canonical size and distance to optimize the detection probability.

Not ready to report the results here.

A.J. Smith | Fermi Symposium 2018

![](_page_29_Picture_7.jpeg)

## A Young PWN in the Cygnus region

![](_page_30_Figure_1.jpeg)

- > 2HWC 2019+368, extended source coincident with PSR J2021+3651.

  - Very bright, well known TeV source

![](_page_30_Picture_7.jpeg)

## **Another Young PWN in the Cygnus region**

![](_page_31_Figure_1.jpeg)

> 2HWC 2006+341, extended source coincident with PSR J2004+3429.

## Diffusion fits to 6 Pulsar Halos

- Performed diffusion fit to all reported sources using the technique described in the Science paper using the 1128 day data set.
- No advection is considered.

Source Geminga Monogem 2HWC **J2019+368** HAWC **J0635+068** HAWC **J0543+233** 2HWC **J2006+341\*** 

| Diffusion<br>Radius<br>(degrees) | Diffusion<br>Constant<br>(10 <sup>27</sup> cm <sup>2</sup> /s) | ATNF<br>Distance (kpc) | ATNF Pu<br>age (ky |
|----------------------------------|----------------------------------------------------------------|------------------------|--------------------|
| 6.0±0.8                          | 5.2±1.3                                                        | 0.250                  | 342                |
| 5.3±0.9                          | 5.4±1.8                                                        | 0.288                  | 110                |
| 0.84±0.05                        | 5.3±0.6                                                        | 1.8                    | 17.2               |
| 2.6±1.3                          | 30±25                                                          | 1.35                   | 59                 |
| 2.3±0.4                          | 30±10                                                          | 1.56                   | 253                |
| 4.4±1.0                          | (5±2)10 <sup>3</sup>                                           | 10.8*                  | <b>18.5</b> *      |

![](_page_32_Picture_6.jpeg)

![](_page_32_Picture_7.jpeg)

![](_page_33_Picture_0.jpeg)

A. J. Smith

![](_page_33_Picture_4.jpeg)

## Outriggers Array: High Energy Extension

> 350 small tanks in addition to the 300 large tanks.

N

- Improve core localization for showers near the main array.
- > x4 effective area at high energy.
- 100% taking data since summer.

![](_page_34_Picture_5.jpeg)

![](_page_34_Picture_6.jpeg)

## Conclusion

- HAWC is operating reliably and producing a wealth of data.
   Operation funding by NSF for an additional 5 years.
- TeV Halos have become a new source class.
- Improvements in HAWC's sensitivity at >10TeV, along with additional data will undoubtably lead to additional discoveries.
  - Outriggers
  - Improvements to gamma/hadron separation and other reconstruction advances
- ATNF survey will be done soon
- Potential for "Hidden" pulsars?

# Thank You

![](_page_35_Picture_10.jpeg)