Classical Novae: The Connections Between Radio and Gamma-Rays

Justin D Linford
West Virginia University

Laura Chomiuk (MSU), Michael Rupen (Herzberg), Amy Mioduszewski (NRAO), Jennifer Sokoloski (Columbia), Joe Bright (Oxford), Koji Mukai (NASA), Adam Kawash (MSU), Elias Aydi (MSU)
Radio Light Curves

• Radio emission persists for years
• Turnover of radio light curve is dependent on density profile of ejecta
• Can calculate ejecta mass from density profile
• “Typical” ejecta mass: 10^{-5} to $10^{-4} \, M_\odot$

V1974 Cygni VLA light curve
(From Hjellming 1996)
Radio Light Curves

V1974 Cyg
From Hjellming 1996

V1723 Aql
From Weston et al. 2016

V392 Per
PRELIMINARY

V5855 Sgr
PRELIMINARY

Non-thermal "flare"

Late peak

Day 0 = 2018-04-29 (MJD 58237)

long plateau

Day 0 = 2016-10-20 (MJD 57681)
Radio Spectral Index: $S_\nu \propto \nu^\alpha$

- In theory, optically thick bremsstrahlung radiation should have $\alpha=+2$
 - We have never seen this
- Optically thin bremsstrahlung: $\alpha=-0.1$
- Optically thin synchrotron: $\alpha=-0.7$

See Franckowiak et al. 2018 for discussion of V1535 Sco as a candidate Fermi source
High-Resolution Imaging: VLA

V959 Mon (2012)

Can get distances with expansion parallax (e.g., Linford et al. 2015)
High-Resolution Imaging: VLA

More examples of non-spherical morphology
High-Resolution Imaging: VLBI

RS Oph (2006): VLBA

V959 Mon (2012): VLA + VLBA

Compact non-thermal knots (VLBA)

See Rupen et al. 2008, Sokoloski et al. 2008

See Chomiuk et al. 2014
The Two-Flow Model

See Chomiuk et al. 2014, Metzger et al. 2015, Li et al. 2017, Martin et al. 2018
V392 Per (2018)

- Nova eruption 2018-04-29
- Known CV
- ~4 kpc (Gaia DR2)
- Fermi detections for ~11 days
- VLA, AMI-LA*, VLBA, EVN

Gray region = Fermi detection
Vertical dotted lines = VBLA/EVN observations

*15.5 GHz Arcminute Microkelvin Imager – Large Array (AMI-LA) data provided by Joe Bright (Oxford)
V392 Per (2018): VLBA

Color = Day 18, 8.4 GHz
Contours = Day 22, 4.9 GHz

White = Day 22, 4.9 GHz
Blue = Day 46, 4.9 GHz
Green = Day 86, 4.9 GHz
Summary: Radio & Gamma-rays

- Radio imaging reveals multiple ejecta components leading to shocks and gives expansion parallax distances
 - Are the Fermi-detected novae the nearer ones?
 - Are all Fermi-detected novae non-spherical?
 - Are ALL novae non-spherical?
- Radio VBLI directly images regions of accelerated particles
 - How much does non-thermal emission contribute to total radio flux density during Fermi detection?
- Radio monitoring reveals non-thermal emission
 - Are we missing radio “flares” and “bumps” due to low observing cadence?
Active and Upcoming Programs

• AMI-LA high-cadence monitoring at 15 GHz
• VLA high-cadence monitoring program at 5 GHz begins November 2018
• eMERLIN 5 GHz imaging of V392 Per this month (hopefully)
• EVN observations of V392 Per just completed
• VLA high-resolution imaging proposal for 2019
• VLBA early observation proposal for 2019
Looking To the Future

• MeerKAT began full operations in July 2018
 • ThunderKAT transient program (PIs: P. Woudt & R. Fender)
 • MeerLICHT 0.65m for simultaneous radio + optical

• SKA1 construction to start in 2019
 • Great sensitivity (~4x VLA collecting area)
 • Great angular resolution (~4x VLA longest baseline)

• AMEGO will be great for novae
 • Good energy range for novae
 • Survey mode
 • See Sylvain Guiriec’s talk – Thursday, 3:30
• 10x the sensitivity of the VLA
• 10x the resolution of the VLA
 • ALL THE TIME!
 • Every light curve data point is also a frame in an ejecta expansion movie!
• Optimized for thermal emission
• Possibly adding very long baselines