

CHARACTERIZING THE BRIGHTEST GAMMA-RAY FLARES OF FLAT SPECTRUM RADIO QUASARS

MANUEL MEYER, ROGER BLANDFORD, JEFF SCARGLE, ON BEHALF OF THE FERMI-LAT COLLABORATION OCTOBER 16, 2018 FERMI SYMPOSIUM 2018 BALTIMORE, MD, USA MAMEYER@STANFORD.EDU

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

FLAT SPECTRUM RADIO QUASARS AS GAMMA-RAY EMITTERS

FLAT SPECTRUM RADIO QUASARS AS GAMMA-RAY EMITTERS Blazars with flat ra

Blazars with flat radio spectra and broad optical emission lines

Bright **γ**-ray emitters with extreme flares, 1/3 of Fermi observed AGNs [3LAC, Ackermann+ 2015]

Variability on time scales of minutes observed above100 MeV (100 GeV) for 2 (1) sources

[e.g., Aleksic+ 2012, Ackermann+ 2015, Shukla+ 2018, and talks this session]

Location and mechanism of **y**-ray emission still unclear: lepto-hadronic / synchrotron self Compton / external Compton [e.g., Finke 2016 and references therein]

FLAT SPECTRUM RADIO QUASARS AS GAMMA-RAY EMITTERS Blazars with flat re

Blazars with flat radio spectra and broad optical emission lines

Bright **γ**-ray emitters with extreme flares, 1/3 of Fermi observed AGNs [3LAC, Ackermann+ 2015]

Variability on time scales of minutes observed above100 MeV (100 GeV) for 2 (1) sources

[e.g., Aleksic+ 2012, Ackermann+ 2015, Shukla+ 2018, and talks this session]

Location and mechanism of **y**-ray emission still unclear: lepto-hadronic / synchrotron self Compton / external Compton [e.g., Finke 2016 and references therein]

FLAT SPECTRUM RADIO QUASARS AS GAMMA-RAY EMITTERS Blazars with flat re

Blazars with flat radio spectra and broad optical emission lines

Bright **y**-ray emitters with extreme flares, 1/3 of Fermi observed AGNs [3LAC, Ackermann+ 2015]

Variability on time scales of minutes observed above100 MeV (100 GeV) for 2 (1) sources

[e.g., Aleksic+ 2012, Ackermann+ 2015, Shukla+ 2018, and talks this session]

Location and mechanism of **y**-ray emission still unclear: lepto-hadronic / synchrotron self Compton / external Compton [e.g., Finke 2016 and references therein]

FLAT SPECTRUM RADIO QUASARS AS GAMMA-RAY EMITTERS Blazars with flat r

Blazars with flat radio spectra and broad optical emission lines

Bright **γ**-ray emitters with extreme flares, 1/3 of Fermi observed AGNs [3LAC, Ackermann+ 2015]

Variability on time scales of minutes observed above100 MeV (100 GeV) for 2 (1) sources

[e.g., Aleksic+ 2012, Ackermann+ 2015, Shukla+ 2018, and talks this session]

Location and mechanism of **y**-ray emission still unclear: lepto-hadronic / synchrotron self Compton / external Compton [e.g., Finke 2016 and references therein]

No signs of γ -ray absorption found [e.g., Costamante+ 2018 and talk by Sara Cutini]

FLAT SPECTRUM RADIO QUASARS AS GAMMA-RAY EMITTERS Blazars with flat r

X N N N

2

Goals:

Systematic characterization of **global** and **local** temporal **γ**-ray behaviour of brightest FSRQs using *Fermi-LAT* observations

Search for γ -ray absorption in local radiation fields to place constraints on position of emitting region + cross check with time lags between γ ray and radio emission Blazars with flat radio spectra and broad optical emission lines

Bright **y**-ray emitters with extreme flares, 1/3 of Fermi observed AGNs [3LAC, Ackermann+ 2015]

Variability on time scales of minutes observed above100 MeV (100 GeV) for 2 (1) sources

[e.g., Aleksic+ 2012, Ackermann+ 2015, Shukla+ 2018, and talks this session]

Location and mechanism of **y**-ray emission still unclear: lepto-hadronic / synchrotron self Compton / external Compton [e.g., Finke 2016 and references therein]

FLAT SPECTRUM RADIO QUASARS AS GAMMA-RAY EMITTERS Blazars with flat re

2

Goals:

Systematic characterization of **global** and **local** temporal **γ**-ray behaviour of brightest FSRQs using *Fermi-LAT* observations

Search for γ -ray absorption in local radiation fields to place constraints on position of emitting region + cross check with time lags between γ ray and radio emission Blazars with flat radio spectra and broad optical emission lines

Bright **γ**-ray emitters with extreme flares, 1/3 of Fermi observed AGNs [3LAC, Ackermann+ 2015]

Variability on time scales of minutes observed above100 MeV (100 GeV) for 2 (1) sources

[e.g., Aleksic+ 2012, Ackermann+ 2015, Shukla+ 2018, and talks this session]

Location and mechanism of **y**-ray emission still unclear: lepto-hadronic / synchrotron self Compton / external Compton [e.g., Finke 2016 and references therein]

FLAT SPECTRUM RADIO QUASARS AS GAMMA-RAY EMITTERS Blazars with flat re

2

Goals:

Systematic characterization of **global** and **local** temporal **γ**-ray behaviour of brightest FSRQs using *Fermi-LAT* observations

Search for γ -ray absorption in local radiation fields to place constraints on position of emitting region + cross check with time lags between γ ray and radio emission Blazars with flat radio spectra and broad optical emission lines

Bright **γ**-ray emitters with extreme flares, 1/3 of Fermi observed AGNs [3LAC, Ackermann+ 2015]

Variability on time scales of minutes observed above100 MeV (100 GeV) for 2 (1) sources

[e.g., Aleksic+ 2012, Ackermann+ 2015, Shukla+ 2018, and talks this session]

Location and mechanism of **y**-ray emission still unclear: lepto-hadronic / synchrotron self Compton / external Compton [e.g., Finke 2016 and references therein]

SOURCE SELECTION AND ANALYSIS

- Goal: select brightest flares to guarantee high S/N spectra and ability to search for variability within one *Fermi*-LAT orbit
- Requirement: daily flux > 10⁻⁵ ph cm⁻² s⁻¹ within 1σ uncertainty in weekly monitored light curves
- Perform Fermi-LAT analysis above 100MeV with 9.5 years of Pass 8 data

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/msl_lc/

SOURCE SELECTION AND ANALYSIS

- Goal: select brightest flares to guarantee high S/N spectra and ability to search for variability within one *Fermi*-LAT orbit
- Requirement: daily flux > 10⁻⁵ ph cm⁻² s⁻¹ within 1σ uncertainty in weekly monitored light curves
- Perform Fermi-LAT analysis above 100MeV with 9.5 years of Pass 8 data

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/msl_lc/

BAYESIAN BLOCKS TO DETECT SIGNIFICANT VARIATIONS [SCARGLE+ 2012]

		PKS1510-089
SUNDANS TILL	i i i i kan i kan kan kan i	Bayesian blocks, $N_{Blocks} \approx 118$
		Average flux
MARKARKARKARKARKA	ana	JAKKARYKARA
800 1000 1200 1400	500 1800 2000 2200 2400 2600 2800 3000 3200 3400 3	600 3800 4000 4

Time [MJD - 54000]

1400

1000 1200

BAYESIAN BLOCKS TO DETECT SIGNIFICANT VARIATIONS [SCARGLE+ 2012]

 $Flux (E > 100 MeV) [\times 10^{-6} cm^{-2}s^{-1}]$

							Ì																						\langle		\langle												$\langle \rangle$		P	KS	1	51	0-0	08	9					X	8
3	ł	¥	\mathcal{H}	$\langle \rangle$	\mathcal{H}			8	Ì		\langle	\mathcal{H}	$\langle \cdot \rangle$		\langle	\mathcal{C}	\langle		\langle	$\left\{ \right\}$	\langle	\mathcal{H}	$\langle \cdot \rangle$	\langle	\langle	\mathcal{H}	$\langle \rangle$		$\langle \rangle$	\mathcal{H}	$\langle \rangle$	\mathcal{H}		\mathcal{H}				\langle	$\langle \cdot \rangle$					Ba	ye	sia	n t	νlo	cks	, Λ	VB10	cks	Ż	118	8 -	▓	88
				$\langle \rangle$		N								X			\langle				\mathcal{C}						\langle		\langle	\langle	\langle	\langle						$\langle \rangle$						Av	er	age	: fi	ux	$\langle \rangle$	$\langle \rangle$			$\langle \rangle$	$\langle \rangle$		X	88
\sum			$\langle \rangle$		\sum						$\overline{)}$	\sum	\sum		\langle	\sum	\sum		\sum	$\left[\right]$		\sum	\mathbb{N}			\sum		X		\sum		\sum		\sum					\sum				$\langle \rangle$	X				X			$\langle \rangle$	\sum				X	\bigotimes
	$\langle \rangle$	\mathcal{H}				Ŋ					\langle	\langle		X	$\left\{ \right\}$	\langle		$\langle \cdot \rangle$	\langle		$\langle \cdot \rangle$	\langle			\geq	\langle	\mathcal{H}		\mathcal{H}	\langle	$\langle \rangle$	$\langle \rangle$	X	$\langle \rangle$				$\langle \rangle$	\mathcal{H}		$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	\mathcal{H}	$\langle \rangle$	$\langle \rangle$	$\langle \cdot \rangle$		$\langle \rangle$	$\langle \cdot \rangle$	$\langle \cdot \rangle$			$\langle \rangle$		X	88
	X		$\langle \rangle$				1																	N		\geq		N										\langle					$\langle \rangle$									\mathbb{N}	$\langle \rangle$			∜	\bigotimes
Z	Ì	Ì	Ń	Ŋ			1		Ø		\langle	Ì		7	\langle			Z	Ń		X	Ì			Ż	Ì	X	Ì	X	Ì	\langle			$\langle \rangle$		Ŕ		$\langle \rangle$	Ż	Ż	$\langle \rangle$	$\langle \rangle$	Ì	$\overline{\mathcal{M}}$		$\langle \rangle$	$\langle \rangle$			$\langle \rangle$	$\langle \rangle$			$\langle \rangle$			88
$\langle \rangle$		$\langle \rangle$		\square		Ŋ	Ŋ		Ø			$\langle \rangle$	$\langle \rangle$		$\sum_{i=1}^{n}$		Q				7				\sum	$\langle \rangle$	$\overline{7}$		À	-				2			R			\mathcal{X}	$\langle \rangle$	$\langle \rangle$				$\langle \rangle$	$\langle \rangle$		$\langle \rangle$	$\langle \rangle$			$\langle \rangle$	$\langle \rangle$		X	\bigotimes

1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200

IMPLEMENTATION OF HOP ALGORITHM / HILL CLIMBING [EISENSTEIN & HUT 1998] TO GROUP BAYESIAN BLOCKS

Time [MJD - 54000]

BAYESIAN BLOCKS TO DETECT SIGNIFICANT VARIATIONS [SCARGLE+ 2012] SELECT BRIGHT HOP GROUPS TO ZOOM IN ON SHORTER TIME SCALES (DAYS, ORBITS)

PKS1510-089	
– Bayesian blocks, N _{Blo}	$c_{\rm ks} = 118$
Average flux	

 $\times 4200$

IMPLEMENTATION OF HOP ALGORITHM / HILL CLIMBING [EISENSTEIN & HUT 1998] TO GROUP BAYESIAN BLOCKS

1000 1210 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

Time [MID - 54000]

SUB-ORBITAL LIGHT CURVES: SEARCH FOR VARIABILITY ON MINUTE TIME SCALES

SUB-ORBITAL LIGHT CURVES: SEARCH FOR VARIABILITY ON MINUTE TIME SCALES

 $t_0 = 55848.76$ MJD

+

+ CTA102

SUB-ORBITAL LIGHT CURVES: SEARCH FOR VARIABILITY ON MINUTE TIME SCALES

 $F[10^{-5} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}]$

 $F [10^{-5} \text{ cm}^{-2} \text{ s}^{-1}]$

 $F [10^{-5} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}]$

40

SEARCH FOR ABSORPTION FEATURES IN SPECTRA

- Stratified BLR model with flattened geometry: emission lines emitted from rings perpendicular to jet [Finke 2016]
- Ring radii and line
 luminosities from
 reverberation mapping
 [Liu+ 2006; Torrealba+
 2012]
- Only free parameter:
 distance of y-ray emission
 region to BH

SEARCH FOR ABSORPTION FEATURES IN SPECTRA

- Stratified BLR model with flattened geometry: emission lines emitted from rings perpendicular to jet [Finke 2016]
- Ring radii and line luminosities from reverberation mapping [Liu+ 2006; Torrealba+ 2012]
- Only free parameter: distance of **y**-ray emission region to BH

CORRELATION ANALYSIS BETWEEN GAMMA-RAY AND RADIO LIGHT CURVES

- Search for time lags with local cross correlation function [Max-Moerbeck+ 2014]
- Radio observations:
 - SMA (1.3 mm / 230 GHz)
 - ALMA Band 3 (~3 mm / 100 GHz)
 - OVRO (15 GHz)

RESULTS FOR CROSS CORRELATION STUDY

- Correlations with significance > 2σ
 found for 3C273 (OVRO, SMA), CTA102
 (ALMA), and 3C454.3 (OVRO, ALMA, SMA)
- γ -ray leads radio emission
- Distance between γ-ray and radio emitting zones:

$$d_{\gamma,r} = \frac{\Gamma \delta \beta c \tau_{\text{peak}}}{1+z}$$

[jet parameters from Jorstad+ 2017]

- Core position from VLBI observations [Lister+ 2016 and following Fuhrmann+ 2014]
- For 3C454.3 and CTA102: y-ray emission consistent with mm emission produced at distances ≈ pc, however would drastically increase cooling time!

PAIRS OF SIMULATED LIGHT CURVES

CONCLUSIONS

- Carried out systematic study of brightest γ-ray emitting FSRQs with 9.5 years of LAT data
- Flaring episodes determined using Bayesian blocks and implementation of HOP algorithm
- Sources show complex flaring behaviour and flicker noise on longer time scales
- Evidence for **variability on minute time scales** found for 4 sources
- Absence of spectral BLR absorption features places γ-ray emitting region close to Lya emitting BLR ring [see other talks this session]
- Evidence for correlation between γ-ray and radio emission found for 3 sources, consistent with co-spatial production of γ rays and mm emission, however, might conflict with short cooling times

BACK UP

 $\times 10^{-6} \text{ cm}^{-2} \text{s}^{-1}$

Ŀ

DETERMINING THE POWER SPECTRUM

- Best-fit periodogram derived from simulated light curves [following method of Max-Moerbeck+ 2014 and Emmanoupoulos+ 2013]
- Best-fit power spectral density with power law with index ~ 1,
 flicker noise

FIT TO ORBITAL LIGHT CURVES

FIT TO ORBITAL LIGHT CURVES

FIT TO ORBITAL LIGHT CURVES

All sources show rise and decay times shorter than horizon crossing time (in observer's frame)

FIT TO ORBITAL LIGHT CURVES: ASYMMETRY

 A < 0: fast rise exponential decay (FRED), could indicate particle injection and cooling

 A ~ 0: symmetric flares, could indicate beam sweeping through line of sight, or superposition of flares

• A > 0: exponential rise fast decay (ERFD)

FIT TO ORBITAL LIGHT CURVES: ASYMMETRY

 A < 0: fast rise exponential decay (FRED), could indicate particle injection and cooling

- A ~ 0: symmetric flares, could indicate beam sweeping through line of sight, or superposition of flares
- A > 0: exponential rise fast decay (ERFD)

$$A = \frac{\tau_{\rm rise} - \tau_{\rm decay}}{\tau_{\rm rise} + \tau_{\rm decay}}$$

GAMMA-RAY OPACITY DUE PAIR PRODUCTION WITH BLR PHOTONS

[Model adapted from Finke 2016]

17

ENERGY DEPENDENT ORBITAL LIGHT CURVES

Light curves only shown if at least 2 bayesian blocks per energy bin detected

- Time delay searched with ZDCF method [Alexander 1997, 2013]
- Positive and negative time lags are found, peak width of ZDCF consistent with zero lag

RESULTS FOR SEARCH FOR GAMMA-RAY RADIO CORRELATION

Source	\hat{eta}	p_{β}	$\tau_{\rm peak}$ [days]	p_{τ}	$d_{\gamma,r} \; [\mathrm{pc}]$
			OVRO		
$\rm PKSB1222{+}216$	$1.92^{+0.39}_{-0.59}$	0.59	_		
3C273	$2.38^{+0.30}_{-0.97}$	0.94	$-416.5^{+217.0}_{-140.0}$	0.0068	$10.96~[5.2, 14.6]~\pm 4.4$
3C279	$2.29^{+0.32}_{-0.94}$	0.71			_
PKS1510-089	$1.89^{+0.45}_{-0.84}$	0.34			
CTA102	$2.23^{+0.26}_{-0.92}$	0.84			_
3C454.3	$2.20^{+0.36}_{-2.20}$	0.40	$-101.5^{+49.0}_{-112.0}$	0.0156	$15.39\ [8.0, 32.4]\ \pm 2.8$
		1	ALMA Band 3		
3C273	$2.12^{+0.40}_{-2.12}$	0.73			_
3C279	$1.82^{+0.38}_{-0.45}$	0.89			_
CTA102	$1.94^{+0.42}_{-1.33}$	0.45	$-216.0^{+209.0}_{-11.0}$	0.0092	$58.85~[1.9, 61.8]~\pm 7.3$
3C454.3	$1.73^{+0.36}_{-0.30}$	0.25	$-27.0^{+30.0}_{-30.0}$	0.0164	$4.09[-0.5, 8.6]\pm 0.7$
			SMA 1.3mm		
3C273	$1.48^{+0.40}_{-0.33}$	0.17	$-122.5^{+84.0}_{-7.0}$	0.0088	$3.22~[1.0, 3.4]~\pm 1.3$
3C279	$1.61^{+0.16}_{-0.28}$	0.97			
3C454.3	$1.64^{+0.31}_{-1.64}$	0.21	$10.5^{+21.0}_{-28.0}$	0.0002	$-1.59[-4.8,2.7]\pm 0.3$

CALCULATING THE COOLING TIME FOR EXTERNAL COMPTON SCATTERING

$$t_{\rm cool,BLR/dt} = \frac{1+z}{\delta_D} \frac{3m_e c^2}{4c\sigma_{\rm T} u'_{\rm BLR/dt}} \sqrt{\frac{g_{\rm BLR/dt}}{g_{\rm BLR/dt}}}$$
$$u_{\rm BLR/dt,ring} = \frac{\xi_{\rm li} L_{\rm disk}}{4\pi c (R_{\rm li}^2 + r^2)}$$
$$u'_{\rm BLR/dt,ring} = \frac{4}{3} \Gamma^2 u_{\rm BLR/dt,ring}$$

[E.g., Dermer & Schlickeiser 2002; Dermer & Menon 2009; Finke 2016]

SEARCH FOR ABSORPTION

RESULTS FOR SEARCH FOR ABSORPTION

SОК		ΟN							PRELI	
t_0	Δt	$r_{ m lim}$	$r_{\rm lim}$	$r_{ m lim}$	$E_{\rm HEP}$	$E_{\tau_{\gamma\gamma}=1}$	$t_{\rm cool, \ BLR}$	$t_{ m cool, dt}$	$ au_{ m decay}$	MINAN
[MJD]	[days]	$[10^{17}\mathrm{cm}]$	$[R_{Ly\alpha}]$	$[r_g]$	$[\mathrm{GeV}]$	[GeV]	[mins]	[hours]	[hours]	182
				PKS	B1222+2	216				
55364.68	3.42	1.33	1.40	609	75.39	69.69	8.2	26.8	47.4 ± 8.3	
					3C279					
57188.07	1.87	0.49	0.64	867	56.03	42.91	2.7	19.0	0.5 ± 0.9	
58133.34	5.32	1.45	1.91	2580	92.56	107.91	9.0	19.0	8.2 ± 6.3	
				PK	S1510-08	39				
57114.16	1.42	0.51	0.66	1088	66.54	54.99	0.6	4.5	0.4 ± 0.3	
57243.84	4.53	0.74	0.97	1591	75.93	65.39	0.8	4.5	44.4 ± 9.4	
				(CTA102					
57737.41	1.67	1.41	0.86	562	36.25	21.23	1.0	6.4	0.3 ± 0.5	
57749.10	4.99	3.20	1.95	1275	73.80	37.94	2.8	6.4	8.7 ± 1.2	
57757.55	4.66	2.76	1.67	1096	39.19	32.38	2.2	6.4	24.6 ± 2.3	
57861.71	2.42	1.95	1.18	776	34.73	24.94	1.4	6.4	1.2 ± 0.7	
				3	3C454.3					
55516.55	8.93	3.19	1.36	1598	41.19	28.73	4.2	16.8	2.6 ± 1.0	