

Gamma-ray novae

Pierrick Martin on behalf of the Fermi-LAT collaboration

V407 Cyg

Novae

Thermonuclear runaway burning of electron-degenerate material accreted on a WD

Violent 10^{-7} - 10^{-4} M_{\odot} ejection followed by continued burning at L_{Edd}~ 10^{38} erg/s

Recurrent over 1-10⁴ yrs time scales 50 (+30/-20) novae/yr in Galaxy Wolf et al. (2013), Shafter (2016)

Multi-wavelength transient from radio to X-rays (**now gamma-rays**) Variety of observed behaviors, at all stages

A new gamma-ray source class

Ackermann et al. (2014)

Current gamma-ray detection record

Year	Object	Discoverer	
2010	V407 Cyg	Nishiyama/Kabashima	
2012	V1324 Sco	MOA	Classical and symbiotic novae
	V959 Mon	Fermi	
2013	V339 Del	Itagaki	
	V1369 Cen	Seach	Low
2014	<u>V745 Sco</u>	Stubbings	<u>significance</u>
2015	V5668 Sgr	Seach	objects (+2 from revisiting
2016	<u>V407 Lup</u>	ASASSN	data with Pass 8)
	V5855 Sgr	Itagaki	
	V5856 Sgr	ASASSN	
2017	V549 Vel	ASASSN	High
2018	Nova Mus 2018	Kaufman	significance objects
	Nova Car 2018	ASASSN	
	V392 Per	Nakamura	

Variety of gamma-ray novae

- Symbiotic and classical
- Very fast to slow, variety of optical lightcurves
- Gamma-ray luminosities vary by >20, distances 1-7kpc
- Some very bright optical novae not detected in gamma-rays

A first population study (Franckowiak et al., A&A, 2018)

Search for gamma-rays from 75 optical novae in 7.4 yrs of Pass 8 data

- 2 novae candidates at ~2σ (V679 Car 2008, V1535 Sco 2015)
- Sub-threshold population at 3σ
- Constraining gamma-ray emissivity distribution from population model
- Excluded: constant or correlated with maximum magnitude
- Favored: broader uncorrelated distributions

PLslope2 -6.00.105 Ο 0 0.090 X -6.5 log10(F_{γ}) [ph/s/cm²] 0 0.075 00 -7.0 ag/l 0.060 Ο 0.045 0.030 0 -7.5 0.015 -8.04 0.000 12 8 10 6 4 2 Peak Apparent Magnitude

A first population study (updated approximately)

8th Fermi symposium - Oct 2018

Pierrick MARTIN

Novae as particle accelerators – symbiotic systems

WD + RG companion (RS Oph,V407 Cyg,V745 Sco)

Shock in dense stellar wind Scaled-down SN/SNR (10⁴⁴ erg, 3000km/s, weeks)

8th Fermi symposium - Oct 2018

Novae as particle accelerators – symbiotic systems

- LAT data reproduced from typical assumptions for shock acceleration
- Mass amount and distribution are key to reproduce the light curve
- Martin & Dubus (2013)

V407 Cyg: (if) shock propagating in matter accumulated around WD gamma-rays mostly inverse-Compton in nova+RG light

Novae as particle accelerators – classical novae

- Circumbinary medium mostly empty
- ... the ejecta is the mass reservoir !
- Internal shocks revealed by hard X-rays (ROSAT...Swift) •
- Multiple ejecta components from lines •

Impulsive ejection followed by fast radiatively driven wind

Radiative forward and reverse **shocks** separated by cold dense shell

Variations on the geometry Metzger et al. (2014,2015) Martin et al. (2018)

Novae as particle accelerators – classical novae

- Diffusive shock acceleration with values typical of SNRs
 - Particle injection fraction $\sim 10^{-4}$ and e/p ratio $\sim 10^{-2}$
 - Amplified upstream magnetic field = 10⁻⁴-10⁻² the ram pressure
 - Particles diffusing in Bohm limit

Protons accelerated **<TeV** Electrons exhausted by synchrotron losses Gamma-rays > 100MeV dominated by **pion decay**

Novae as particle accelerators – classical novae

- Gamma-rays as a probe of mass ejection
- LAT data favour nova wind < 2000 km/s
- Poor prospects for detection at TeV energies (CTA)

Most other parameters of internal shock scenario **poorly constrained Need additional information** on shock dynamics from X-rays/optical

- Internal **shocks dissipate 10³⁷⁻³⁸ erg/s** at peak, primarily in X-rays
- Observed $L_X \le 10^{35}$ erg/s
- High X-ray opacity in early stages...**reprocessing into optical** light !

• ASSASN-16ma = V5856 Sgr (Li et al. 2017)

• ASSASN-16ma = V5856 Sgr (Li et al. 2017)

• Another possible example V5855 Sgr (Munari et al. 2017)

- Another possible example V5855 Sgr (Munari et al. 2017)
 - Wavelength-dependent maximum time for fireball component
 - ...not the case for gamma component: different origin !

Novae as cosmic-ray sources ?

- Globally, negligible
 - Kinetic energy= 10⁴⁴⁻⁴⁵ erg/nova
 - Eruption rate 50~ novae/yr
 - At least 2000x below SNe

Novae as cosmic-ray sources ?

- Possible local effects ?
 - Kamae et al., PASJ, 2018
 - Higher WD density in solar neighborhood
 - CR trapping in local bubble
 - Explains hardening in CR spectra (and GeV hump in inner Galaxy)

Open issues (personal selection)

- Mass ejection in nova eruptions
 - What is the typical pattern for mass ejection in novae (if any)?
 - Role of asymmetry/inhomogeneities/geometry ?
 - Which progenitor properties drive the mass ejection sequence ?
- Radio emission
 - Can we fully account for the early non-thermal radio emission ?
 - Radiation from secondaries from hadronic interactions ?
 - See Justin Linford's talk

Relation of gamma-ray novae to the whole population

- What drives the gamma-ray sample selection ?
- Can we predict gamma-ray emission from other bands ?

The way forward

- Radiation transfer calculations
 - What kind of outflow can result from steady nuclear burning on the WD ?
 - What fraction of the internal shock power is reprocessed into optical ?

Fermi-LAT

- Expanding the detected population
- More high significances objects à la ASASSN-16ma and Nova Car 2018
- Eruption of nearby symbiotic RS Oph and TCrB in mid-2020 !
- Associated multi-wavelenth coverage
 - X-rays (Swift, Nustar,...)
 - High cadence optical follow-up
 - Early and late radio follow-up
 - Mid-term: MeV and TeV exploration Vurm et al. (2018), Metzger et al. (2016)

Fermi-LAT shed a new light on the nova phenomenon

- ... by probing the heart of the mass ejection process
- ... and helping connect various observables into a coherent picture

Nova Car 2018 Most significant Highest-energy photons

