Gamma-ray novae

Pierrick Martin
on behalf of
the Fermi-LAT collaboration
Novae

Thermonuclear runaway burning of electron-degenerate material accreted on a WD

Violent 10^{-7}-$10^{-4} \ M_\odot$ ejection followed by continued burning at $L_{\text{Edd}} \sim 10^{38} \ \text{erg/s}$

Recurrent over 1-10^4 yrs time scales

50 ($+30/-20$) novae/yr in Galaxy

Wolf et al. (2013), Shafter (2016)

Multi-wavelength transient from radio to X-rays (now gamma-rays)

Variety of observed behaviors, at all stages
A new gamma-ray source class

Week/month-long transient
Most spectra cutting off at few GeV

Ackermann et al. (2014)
Current gamma-ray detection record

<table>
<thead>
<tr>
<th>Year</th>
<th>Object</th>
<th>Discoverer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>V407 Cyg</td>
<td>Nishiyama/Kabashima</td>
</tr>
<tr>
<td>2012</td>
<td>V1324 Sco</td>
<td>MOA</td>
</tr>
<tr>
<td></td>
<td>V959 Mon</td>
<td>Fermi</td>
</tr>
<tr>
<td>2013</td>
<td>V339 Del</td>
<td>Itagaki</td>
</tr>
<tr>
<td></td>
<td>V1369 Cen</td>
<td>Seach</td>
</tr>
<tr>
<td>2014</td>
<td>V745 Sco</td>
<td>Stubbings</td>
</tr>
<tr>
<td>2015</td>
<td>V5668 Sgr</td>
<td>Seach</td>
</tr>
<tr>
<td>2016</td>
<td>V407 Lup</td>
<td>ASASSN</td>
</tr>
<tr>
<td></td>
<td>V5855 Sgr</td>
<td>Itagaki</td>
</tr>
<tr>
<td></td>
<td>V5856 Sgr</td>
<td>ASASSN</td>
</tr>
<tr>
<td>2017</td>
<td>V549 Vel</td>
<td>ASASSN</td>
</tr>
<tr>
<td>2018</td>
<td>Nova Mus 2018</td>
<td>Kaufman</td>
</tr>
<tr>
<td></td>
<td>Nova Car 2018</td>
<td>ASASSN</td>
</tr>
<tr>
<td></td>
<td>V392 Per</td>
<td>Nakamura</td>
</tr>
</tbody>
</table>

Classical and **symbiotic novae**

Low significance objects
(+2 from revisiting data with Pass 8)

High significance objects
Variety of gamma-ray novae

- Symbiotic and classical
- Very fast to slow, variety of optical lightcurves
- Gamma-ray luminosities vary by >20, distances 1-7kpc
- Some very bright optical novae not detected in gamma-rays

Ackermann et al. (2014)
Cheung et al. (2016)
A first population study (Franckowiak et al., A&A, 2018)

Search for gamma-rays from 75 optical novae in 7.4 yrs of Pass 8 data

- 2 novae candidates at \(\sim 2\sigma \) (V679 Car 2008, V1535 Sco 2015)
- Sub-threshold population at \(3\sigma \)
- Constraining gamma-ray emissivity distribution from population model
- Excluded: constant or correlated with maximum magnitude
- Favored: broader uncorrelated distributions

![Graphs showing the distribution of peaks in apparent magnitude and log10 flux over various energy levels.](image-url)
A first population study (updated approximately)
Novae as particle accelerators – symbiotic systems

WD + RG companion
(RS Oph, V407 Cyg, V745 Sco)

Shock in dense stellar wind
Scaled-down SN/SNR
(10^{44} erg, 3000 km/s, weeks)

Pan et al. (2015)
Novae as particle accelerators – symbiotic systems

- LAT data reproduced from typical assumptions for shock acceleration
- Mass amount and distribution are key to reproduce the light curve
- Martin & Dubus (2013)

V407 Cyg: (if) shock propagating in matter accumulated around WD gamma-rays mostly inverse-Compton in nova+RG light
Novae as particle accelerators – classical novae

- Circumbinary medium mostly **empty**
- …the ejecta is the mass reservoir!
- Internal shocks revealed by hard X-rays (ROSAT…Swift)
- Multiple ejecta components from lines

Impulsive ejection followed by fast radiatively driven wind

Radiative forward and reverse **shocks** separated by cold dense shell

Variations on the geometry
Metzger et al. (2014,2015)
Martin et al. (2018)
Novae as particle accelerators – classical novae

- Diffusive shock acceleration with values typical of SNRs
 - Particle injection fraction $\sim 10^{-4}$ and e/p ratio $\sim 10^{-2}$
 - Amplified upstream magnetic field $= 10^{-4}$-10^{-2} the ram pressure
 - Particles diffusing in Bohm limit

Protons accelerated $<\text{TeV}$
Electrons exhausted by synchrotron losses
Gamma-rays $> 100\text{MeV}$ dominated by pion decay
Novae as particle accelerators – classical novae

- Gamma-rays as a **probe of mass ejection**
- LAT data favour nova wind < 2000 km/s
- Poor prospects for detection at TeV energies (CTA)

Martin et al. (2018)

Most other parameters of internal shock scenario **poorly constrained**

Need additional information on shock dynamics from X-rays/optical
The light from novae

- Internal shocks dissipate 10^{37-38} erg/s at peak, primarily in X-rays
- Observed $L_X \leq 10^{35}$ erg/s
- High X-ray opacity in early stages…reprocessing into optical light!

- Additional contribution to optical lightcurve (secondary maxima, plateaus)

Metzger et al. (2015)
The light from novae

- ASSASN-16ma = V5856 Sgr (Li et al. 2017)
The light from novae

- ASSASN-16ma = V5856 Sgr (Li et al. 2017)
The light from novae

- Another possible example V5855 Sgr (Munari et al. 2017)
The light from novae

- Another possible example V5855 Sgr (Munari et al. 2017)
 - Wavelength-dependent maximum time for fireball component
 - …not the case for gamma component: different origin!
Novae as cosmic-ray sources?

- Globally, negligible
 - Kinetic energy $= 10^{44-45}$ erg/nova
 - Eruption rate $50\sim$ novae/yr
 - At least 2000x below SNe
Novae as cosmic-ray sources?

- Possible local effects?
 - Kamae et al., PASJ, 2018
 - Higher WD density in solar neighborhood
 - CR trapping in local bubble
 - Explains hardening in CR spectra (and GeV hump in inner Galaxy)
Open issues (personal selection)

- Mass ejection in nova eruptions
 - What is the typical pattern for mass ejection in novae (if any) ?
 - Role of asymmetry/inhomogeneities/geometry ?
 - Which progenitor properties drive the mass ejection sequence ?

- Radio emission
 - Can we fully account for the early non-thermal radio emission ?
 - Radiation from secondaries from hadronic interactions ?
 - See Justin Linford’s talk

Relation of gamma-ray novae to the whole population
- What drives the gamma-ray sample selection ?
- Can we predict gamma-ray emission from other bands ?
The way forward

• Radiation transfer calculations
 • What kind of outflow can result from steady nuclear burning on the WD?
 • What fraction of the internal shock power is reprocessed into optical?

• Fermi-LAT
 • Expanding the detected population
 • More high significances objects à la ASASSN-16ma and Nova Car 2018
 • Eruption of nearby symbiotic RS Oph and TCrB in mid-2020!

• Associated multi-wavelenth coverage
 • X-rays (Swift, Nustar,…)
 • High cadence optical follow-up
 • Early and late radio follow-up
 • Mid-term: MeV and TeV exploration

Fermi-LAT shed a new light on the nova phenomenon
 … by probing the heart of the mass ejection process
 … and helping connect various observables into a coherent picture

Vurm et al. (2018), Metzger et al. (2016)
Nova Car 2018
Most significant
Highest-energy photons

8th Fermi symposium - Oct 2018