Discovery of a New Galactic Gamma-ray Binary

Robin Corbet1, L. Chomiuk2, M.J. Coe3, J.B. Coley4, G. Dubus5, P. Edwards6, P. Martin7, V.A. McBride8, J. Stevens6, J. Strader2, L.J. Townsend8

1: University of Maryland, Baltimore County
NASA Goddard Space Flight Center
Maryland Institute College of Art
2: Michigan State University
3: Southampton University
4: Howard University, NASA GSFC/NPP
5: IPAG Grenoble
6: CSIRO Astronomy and Space Science
7: IRAP
8: University of Cape Town
What is a Gamma-ray Binary?

- Binary with SED peak > 1MeV, contains compact object.
- Emission driven by interaction between binary components.

- Pulsar orbiting a hot (O or B type) companion.
- Pulsar and stellar winds (or Be disk) collide and form shocks
- Fermi acceleration at shock + inverse Compton scattering of seed photons from OB star.
Very Few Gamma-ray Binaries are Known

J1018.6-5856 and LMC P3 were found from our search.

(PSR J2032+4127 not plotted here.)
X-ray Binaries Born as Gamma-ray Binaries

HMXBs containing neutron stars can begin as gamma-ray binaries with rapidly rotating neutron stars before spinning down.
The Hunt for New Gamma-ray Binaries

• ~30 gamma-ray binaries were predicted in the Milky Way as early phase of HMXB evolution.
• Dubus+ (2017) estimate 101^{+89}_{-52}
• We search for gamma-ray binaries from detection of periodic variability with the LAT.
• We create light curves, and power spectra of these, for all sources in Fermi catalogs.
Optimizing Signal/Noise

• Aperture photometry with 3° radius.

• Don’t sum *photons* in aperture, instead sum their *probability* of coming from source of interest.

• Construct model for 10° region using LAT catalog, including diffuse background.

• In addition, for power spectrum weight each data point by exposure.
Example Output: LS 5039

- For every source we produce a plot of the power spectrum.
- This is LS 5039, strongest orbital peak of all sources.
 - Primary is $O5V$ star.

<table>
<thead>
<tr>
<th>Height of strongest peak relative to mean power</th>
<th>Period of strongest peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height = 747.</td>
<td>Period = 3.90590501</td>
</tr>
</tbody>
</table>

Power in probability flux squared

- 2.0 × 10^{-15}
- 1.5 × 10^{-15}
- 1.0 × 10^{-15}
- 5.0 × 10^{-16}

Plot against period

Period (days)
Discovery of First γ-ray Binary Beyond Milky Way

“LMC P3” was an unassociated source in the LAT LMC survey. (i.e., no definite counterpart)
Counterpart: HMXB Candidate in an SNR

Seward+ (2012) had previously identified a candidate HMXB in the SNR DEM L241. \((L_x \sim 2 \times 10^{35} \text{ ergs s}^{-1})\).
Optical counterpart is O5III star.

LAT team previously noted DEM L241 as a candidate for the counterpart of P3 (along with AGN, HII region etc.), although it was just outside LAT error ellipse.

We investigated this candidate HMXB with Swift XRT and ATCA…
Multiwavelength Properties of LMC P3

Folded on 10.3 day period
Origin of Orbital Modulation

- Two main effects that could modulate gamma-rays.
- Eccentric orbit with increased interactions near periastron.
- System geometry.
 - Compton scattering at intra-binary shock gives strongest gamma-ray emission observed at superior conjunction.

LS 5039
Casares+ 2005
LMC P3: Optical Radial Velocity Measurements Favor Neutron Star

\[f(M) = (1.3 \pm 1.1, -0.6) \times 10^{-3} M_\odot \]

For \(1.4M_\odot\) neutron star, \(i \sim 34-63^\circ\); for \(10M_\odot\) black hole, \(i = 8 \pm 2^\circ\)

Gamma-ray maximum after superior conjunction.
⇒ some eccentricity?
Searching the FL8Y Source List

• FL8Y source list contains 5524 sources, compared to 3033 in 3FGL catalog.

• Examine all sources, but concentrate on:
 • (i) sources close to the Galactic plane
 • (ii) candidate periods > 1 day. (high-mass systems, reduced search frequencies)

• One source (also in 3FGL etc.) in particular had an interesting power spectrum…
Power Spectrum of J1405.4-6119

- Two harmonically related peaks at ~7 days and ~14 days.
- Each individual peak modest significance (0.005, 0.08)
- But probability of seeing harmonic of stronger peak by chance is 2×10^{-6}
- Source 0.3° from Galactic plane.

- Probability flux shows single sharp peak.
- But, photon weighting may affect photometric properties…
Power Spectrum of **Unweighted** Photons

Without probability weighting
- Only strong *harmonic* at ~7 days is seen.
- Profile is double-peaked.

(For weighted analysis, higher-energy photons with smaller PSF are more heavily weighted.)
"Conventional" LAT aperture photometry shows double-peaked profile on ~14 d period.

Secondary γ-ray peak is softer.

X-ray and radio modulated with soft peak.
Near-Infrared (2MASS) Counterpart of J1405.4

Extremely heavily reddened. $E(B-V) \sim 11$

J-Band
(1.2 μm)

H-Band
(1.7 μm)

K-Band
(2.2 μm)
Gemini/Flamingos near-IR spectrum shows counterpart is O6.5 III
Confirms it’s a binary!
(distance ~6 kpc)
Orbital Periods: Gamma-ray & X-ray Binaries

B = Be star HMXB
R = Roche-lobe overflow HMXB
W = wind-accretion HMXB
How Far Are We Detecting Gamma-ray Binaries?

Based on Dubus+ 2017

![Graph showing the relationship between distance (kpc) and maximum photon luminosity (ph s⁻¹ (1 - 100 GeV)) for Gamma-ray Binaries with LAT Detectable Modulation. The graph includes points for LS 5039, B1259, LSI 61, J1018.6, and LMC P3, illustrating the detection limits.]
How Far **Could** We Find Gamma-ray Binaries?

Maximum detection distance $\propto (\text{observation length})^{1/4}$

Detection volume (Galactic plane) $\propto d^2$

Longest detectable period $\propto \text{observation length}$

![Graph showing the relationship between maximum detection distance, detection volume, and longest detectable period and the distance of gamma-ray binaries.](image)
Galactic Binary Population & Future Prospects

• Power spectra are a powerful way to find binaries.

• Multiwavelength observations crucial to confirm binaries, and understand astrophysics.

• We have one more binary with O star primary!
 • The third O star binary we found from LAT variability.

• Galactic population of γ-ray binaries is still unclear.
 • Probably only scratching the top of the luminosity distribution.
 (Particularly Be star systems.)

• We continue to search for binaries as Fermi acquires more data, and eagerly await the 4FGL catalog…