The Fermi Bubbles as Pair-Haloes

Demosthenes Kazanas & Tonia M. Venters
NASA/GSFC

Residual intensity, $E = 3 - 10$ GeV

$10^7 E_0 \times F\left(\frac{\text{GeV}}{\text{cm}^2\text{sr}}\right)$

PDS 456
Bubble Properties

- Their galactic center association and extent: ~ 10 kpc (indicating a finite time activity for their formation).

- Their (γ-ray) luminosity: $\sim 4 \times 10^{37}$ erg/s (implying a cooling life time of 1My and an energy content of $10^{51} - 10^{52}$ erg).

- The limited extent of their energy spectrum

Note the apparent low energy cut-off! Inconsistent with shock acceleration (typically invoked in these situations).
Bubble Properties (continued)

- Their sharp edges! (on all sides)
Origin

• Some activity in the galactic center at a prior time:

 – a jet from the black hole (Guo & Mathews 2012; Yang et al. 2012)

 – a spherical outflow from the black hole (Zubovas et al. 2011)

 – a wind from supernova (SN) explosions (Crocker & Aharonian 2011)

 – a sequence of shocks from several accretion events onto the black hole (Cheng et al. 2011)

All the above resort to shock acceleration to produce the radiating particles. As such they have problems with the absence of lower frequency radiation and the sharpness of the edges.
Pair Haloes

- Pair haloes are e⁺e⁻ pairs created by high energy γ-rays interacting with ambient radiation away from their source. Generally thought to be related to TeV blazar emission in interactions with the EBL.
- Their length scale is of the order of the mean free path of γ-rays, generally thought to be of order of Mpc.
- The much more intense field of the Galaxy, offers the possibility that this process be associated with the much smaller galactic scales.
Some Simple Estimates

• We assume the presence of a BL Lac state of the Sgr A* black hole at the Galactic Center producing a significant fraction of its radiation in high energy (> 1 TeV) γ-rays.
• Their flux as a function of radius r and energy E will be (assuming conical geometry)

$$F(r, E) \approx \left[\frac{f_0(E)}{r^2} \right] \times e^{-r/\lambda(E)}$$

• $\lambda(E)$ is the $\gamma\gamma \rightarrow e^+e^-$ mean free path

• The e^+e^- injection rate in r, E will be the divergence of the flux

$$Q(r, E) = \nabla \cdot F(r, E)$$

$$Q(r, E) = \left[\frac{f_0(E)}{r^2 \lambda(E)} \right] \times e^{-r/\lambda(E)}$$
The current value of the electron-positron density with the above injection rate can be easily calculated (assuming the injection of e+e- lasts for a time scale Δt shorter than the electron cooling time ($\sim 0.1 - 1$ M yr))

$$N(r, E, t) = Q[r, E/(1 - \beta Et)] \times \frac{1}{(1 - \beta Et)^2} \times \Delta t$$

Where E in $Q(r,E)$ has been replaced by $E/(1 - \beta Et)$ and Δt is the duration of the injection time ($\sim 10,000$ yrs, the light crossing time to the bubble edge; β the inverse electron cooling time).

The luminosity and size of the bubbles is given by the luminosity and duration of the active state Δt and their sharp edges by this fact and the removal of all higher energy leptons by cooling.

The γ-ray luminosity needed to provide the observed radiation is of order $L_\gamma \sim 10^{41}-10^{42}$ erg/s, consistent with the sub-Eddington BL Lac emission.
• Preliminary calculations, *ignoring* (for the time being) *all dynamical and kinematic effects of the e+e- injection in inducing an outflow*, provide the following electron and γ-ray spectra (after adjusting a number of model parameters to obtain a good fit)

• The problem is currently under more detailed study.

• **Thank you !!!**