

A search for ultra-long gamma-ray bursts in the Konus-Wind data

D. Svinkin, D. Frederiks, R. Aptekar, S. Golenetskii, M. Ulanov, A. Tsvetkova, A. Lysenko, A. Kozlova loffe Institute, St.Petersburg, Russia

T. L. Cline NASA Goddard Space Flight Center; Emeritus,

and

K. Hurley Space Sciences Laboratory, University of California, Berkeley

Joint Russian-US Konus-Wind experiment

Launch 1994 - 23+ years of continuous operation,

- **D** Now in orbit near L_1 up to 1.5 million km,
- □ Two NaI(TI) spectrometers 130×75 mm,
- 20 keV 15 MeV, S_{eff}~100-160 cm²
- Burst mode:
 - light curve resolution 2-256 ms
 - 128 channel spectra
- Waiting mode:

Count rates in the 20-80 keV (G1), 80-350 keV (G2), and 300-1200 keV (G3) bands with 2.944 s resolution

- Advantages:
 - stable background (at few ks interval),
 - 2 ×2 π FoV,
 - duty circle ~95%,
 - observes all bright events

 Observation statistics (triggers): 3000 – GRBs (Fermi ~2400, BATSE ~2700) 250 – SGRs 1000 – Solar flares

Konus-Wind triggered GRB classification

The boundary between "short" and "long" GRBs was adopted to be T₅₀=0.6 s: 15% - short GRBs
Hardness-duration distribution is well fitted with 2 2D Gaussians.

Very long GRB data

Instrument	Energy band, keV	Number of bursts	
		T₉₀>250 s	T₉₀>1000 s
CGRO-BATSE	50 - 300	22	1*
BeppoSAX-GRBM	40 - 700	7	0
Swift-BAT	15 - 150	58	15
Fermi-GBM	50 - 300	30	0
Konus-Wind	50 - 1000		8**

* GRB 970315

** reported, so far

Meegan et al. BATSE current GRB cat.; Frontera et al., 2009; Lien et al., 2016; Bhat et al., 2016

loffe Institute

5

Konus-Wind ultra long GRBs

GRB	Z	dT (s)	LC shape	E _{peak} (keV)	Fluence (erg cm ⁻²)	E _{iso} (erg)
971208ª		~2500	FRED	~144	~2.6x10 ⁻⁴	~6.9x10 ^{53**}
020410 ^b	~0.5 ^f	~1600	Multi-episode	~180	~2.8x10 ⁻⁵	~1.8x10 ⁵²
060814B ^a		~2700	FRED	~340	~2.4x10 ⁻⁴	~6.4x10 ^{53**}
080407°		~2100	Multi-episode	~290*	~4.5x10 ⁻⁴	~1.2x10 ^{54**}
091024 ^d	1.1 ^d	~1200	Multi-episode	~280	~1.3x10 ⁻⁴	~4.5x10 ⁵³
111209A ^e	0.7 ^g	~10000	Multi-episode	~310	~4.9x10 ⁻⁴	~5.8x10 ⁵³
121027A	1.8 ^h	>3500	Multi-episode	~300	~7.4x10 ⁻⁵	~5.9x10 ⁵³
130925A	0.35 ^e	~5000	Multi-episode	~152	~6.2x10 ⁻⁴	~1.9x10 ⁵³

* 1st pulse

^{**} at z=1

^aPal'shin+2008, ^bNicastro+2004, ^cPal'shin+2013, ^dVirgili+2013, ^eGolenetskii+2011, ^fLevan+2005, ^gVreeswijk+2011, ^hTanvir+2012, ^eVreeswijk+2011

Known Konus-Wind ultra-long GRBs

Konus-Wind GRBs with known redshifts include 5 u-long GRBs.

loffe Institute

Institute Konus-Wind waiting mode event search

- Bayesian block decomposition of KW waiting mode time history 1994-2017;
- Selection of transients occurred in both detectors and/or at least in two energy bands;
- Preliminary event classification: GRB, Solar flare, hard X-ray transient (e.g. Cyg -X1, V404 Cyg), particle event (using Wind-3DP particle monitor), or instrument glitch;

GRB 121027A

Solar flare M3.0, followed by energetic solar particles

V404 Cyg

KW waiting mode events

The search results

Event type	Number		
Solar Flares	~14 000		
GRB candidates	~12 000		
Other transients	~1 000		
Energetic particle events	~2 000		
Data artifacts	~2 000		
Total	~31 000		

Very long GRB candidates

□ Long burst selection criteria: T_{90} > 250 s, S/N > 10 (at T_{100})

Total found:

- **120** GRB candidates (single and multi-episode),
- □ $13 T_{90} > 1000$ s (including 5 known KW u-long GRBs and 7 new candidates).

Very long GRBs. Duration and hardness.

- The T₉₀ distribution of the KW very long GRBs is consistent with a tail of the triggered GRB population. Log-normal function with x_c and w fixed to those for the triggered GRBs fits the tested distribution with P_{κs}=6%.
- The number of observed u-long GRBs (T₉₀> 1 ks) is consistent with one expected from the fit (within 3σ conf.).
- Ultra-long GRBs extend the softer/longer corner of the long GRB distribution.

Discovered KW ultra-long GRBs

Both seen in the KW data only

red / blue – S1/S2 KW detector, count rate and Bayesian blocks

Discovered KW ultra-long GRBs

red / blue – S1/S2 KW detector, count rate and Bayesian blocks

loffe

Institute

- KW waiting mode data form a continuous 3-channel spectrum in the 20—1450 keV range.
- Spectral models with up to 3 parameters (including norm.) can be tested: e.g. PL (1 d.o.f.), Cutoff PL, Band func. with fixed parameter (e.g. beta).

U-long GRB 130925A; Frederiks et al., 2014

2500

Summary

- KW provides an excellent opportunity to observe prompt emission of ultra-long GRBs for their whole duration.
- Konus-Wind analysis of previously known u-long GRBs shows that with the exception of their duration, the KW u-long GRBs look not much different (spectrum, energetics) from "regular" KW-detected long GRBs.
- The Kons-Wind data search for the ultra-long GRBs reviled ~100 rather bright GRBs longer than 250 s, including ~30 (T₉₀>500 s) and 7 new u-long candidates (T₉₀>1000 s).
- The T₉₀ duration distribution of very long GRBs seems to follow the log-normal law derived for "regular" long GRBs.
- The candidate list will be further refined using InterPlanetary Network detections. The spectral analysis of the new u-long GRBs is ongoing.
- All recent GRBs found with the presented search procedure are published at loffe web site <u>http://www.ioffe.ru/LEA/kw/wm/</u> and IPN master list <u>http://www.ssl.berkeley.edu/ipn3/masterli.html</u>

Thank you!

Work is supported by RSF (grant 17-12-01378)

NASA Goddard SPACE FLIGHT CENTER

Backup: Inter Planetary Network

- □ The 3rd IPN is in operation since 1990
- At present time consists of 7 s/c: AGILE, Fermi, RHESSI, and Swift (at low earth orbits); INTEGRAL (at the elongated oribit up to 0.5 lt-s); Wind (up to 7 lt-s) and Mars Odyssey (Mars, up to 1200 lt-s)
- Included also: MESSENGER, Suzaku, BATSE, Ulysses, etc.
- Continuous full sky monitor with sensitivity of ~10⁻⁶ erg cm⁻² (1 phot. cm⁻² s⁻¹)

Backup: IPN detection example

 $T_{100} = 748 \text{ s};$ $T_{90} = 741 \pm 7 \text{ s}; T_{50} = 730 \pm 12 \text{ s}$