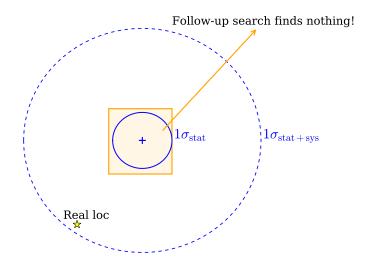
Improved GBM GRB localizations with BALROG

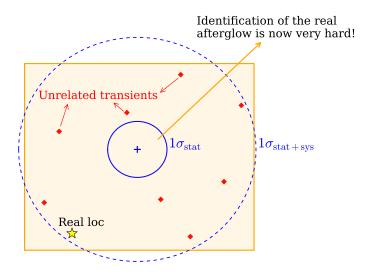

Francesco Berlato

Max Planck Institute for Extraterrestrial Physics

 8^{th} Fermi Symposium, 17^{th} October 2018

Introduction	Localizing with GBM	BALROG performance	Summary
•00			

The current state of GBM localizations with DoL code

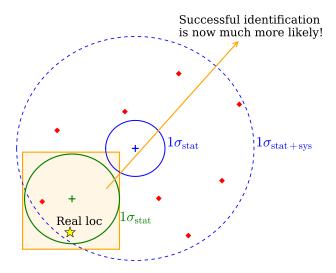


Introduction ○●○ Localizing with GBM 00000

BALROG performance

Summary 0000

The current state of GBM DoL localizations with DoL code



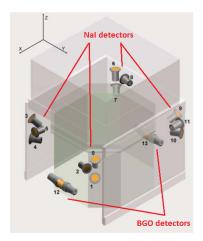
Introduction 000 Localizing with GBM 00000

BALROG performance

Summary 0000

The current state of GBM's localizations with BALROG code

Introd	

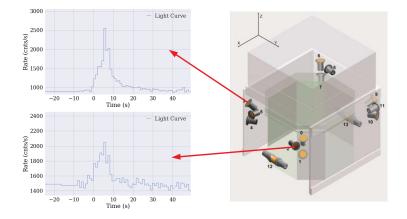

Localizing with GBM

BALROG performance

Summary 0000

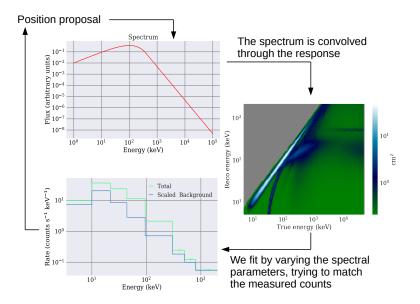
The Gamma-ray Burst Monitor

- The Gamma-ray Burst Monitor (GBM) on board the Fermi space telescope is an array of 14 detectors built to observe GRBs.
- Each detector is pointing in a different direction, so to provide an all-sky field-of-view to the instrument (except the region occulted by the Earth).

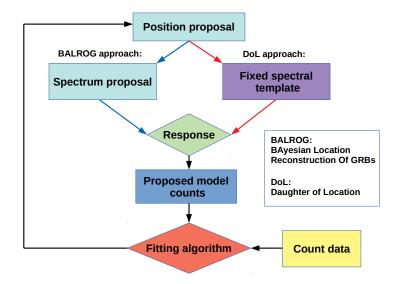


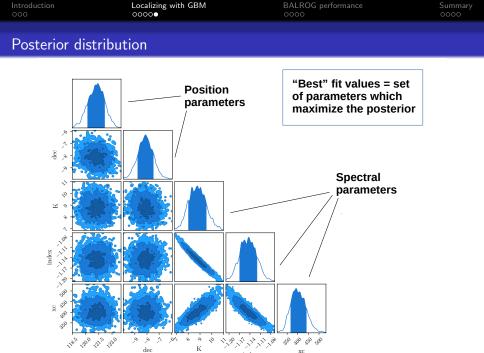
A schematic of the GBM detector array mounted on the Fermi spacecraft (original image from Meegan et al. 2009).

Introduction	Localizing with GBM	BALROG performance	Summary
000	0●000		0000


The Gamma-ray Burst Monitor

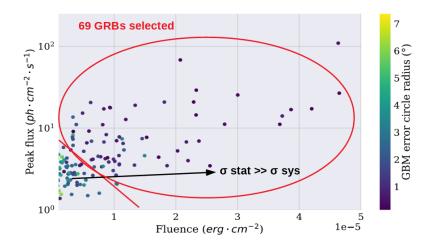
GBM is not an imaging instrument: only counts are measured!


Introduction	Localizing with GBM	BALROG performance	Summary
000	00●00		0000


Forward folding

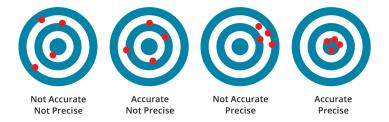
Introduction	Localizing with GBM	BALROG performance	Sui
	00000		

DoL and BALROG algorithms

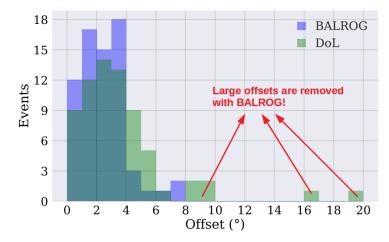


index

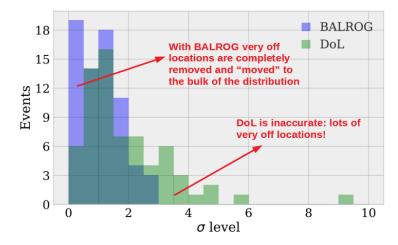
ra


Introduction 000	Localiz 00000	ing with GBM	BALROG performance •000	Summary 0000

Sample selection

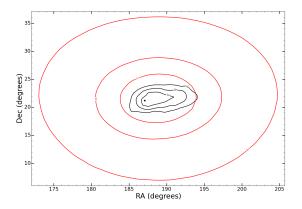

Introduction	Localizing with GBM	BALROG performance	Summary
000		0000	0000
Precision and	accuracy		

- Precise = small spread of the measurements
- Accurate = ability of the uncertainties to capture the true value as often as they should


Introduction	Localizing with GBM	BALROG performance	Summary
000	00000	00●0	0000
Offset compariso	n		

By computing the offset (i.e. angular separation) between fitted and reference position for both BALROG and DoL a comparison in terms of the overall precision can be made for the two methods.

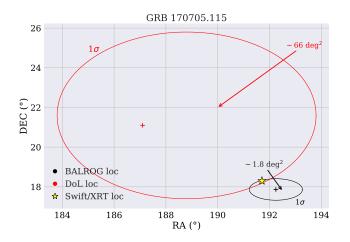
Introduction	Localizing with GBM	BALROG performance	Summary
000	00000	000●	0000
Accuracy comp	parison		


We can compare BALROG and DoL accuracy by checking how many "error bars" away the fitted location is from the real location.

Introduction	Localizing with GBM	BALROG performance	Summary
000	00000		•000

DoL and systematics

DoL tries to deal with the inaccuracy of the algorithm by convoluting the statistical error with a second, purely empirical distribution for the systematic error.



DoL 1,2,3 σ error contours for GRB 170705.115.

Introduction 000	Localizing with GBM	BALROG performance	Summary o●oo

Systematics and error regions

This implies that some localizations will have excessively large error contours, making thus afterglow detection (or searches for gravitational waves or neutrinos) much harder.

Introduction	Localizing with GBM	BALROG performance	Summary
000	00000		0000
In summary			

- Systematics primarily arise due to the use of spectral templates.
- While making the uncertainties larger can improve the accuracy, this greatly lowers the instrument performance and does not solve the underlying problem.
- BALROG can make afterglow detection and multi-messenger searches more effective and reliable and should thus be preferred over DoL.

Thank you for your attention