The Compton Spectrometer and Imager (COSI): opportunities for joint analyses with Fermi

Israel Martinez University of Maryland / NASA-GSFC September 13, 2024 11th Fermi Symposium

- The MeV sky is severely under explored compared to neighboring energy bands
- High discovery potential at energies slightly below Fermi-LAT's \bullet

MeV gap

MeV

COMPTEL (1991 - 2000)

Dominated by Compton scattering

Basics of MeV astronomy: 3 things to know

Dominated by Compton scattering

Imaging capable, but it's complicated.

stellanos

Basics of MeV astronomy: 3 things to know

Dominated by Compton scattering

Basics of MeV astronomy: 3 things to know

Dominated by Compton scattering

The Compton Spectrometer and Imager (COSI)

Optimized to study MeV emission lines

Energy range: 0.2-5 MeV **Energy resolution:** < 1.2% at 511 keV

COSI: 3 things to know

Decent continuum sensitivity, carving into the MeV gap

Wide-field-of-view imaging-capable instrument

Field of view: > 25% of the sky **Angular resolution:** < 4.1° at 511 keV < 2.1° at 1.809 MeV

COSI Science Goals

Uncovering the Origin of Galactic Positrons

COSI Science Goals

Uncovering the Origin of Galactic Positrons

Gain Insight into Extreme Environments with Polarization

AGN and GRB polarization

Gravitational wave and neutrino counterparts

• Bringing modern analysis tools to MeV astronomy!

Open-source Python library

import cosipy

Poisson likelihood-based forward folding analysis

$$\mathscr{L}(\mathbf{s}_{j} | \mathbf{n}_{i}) = \prod_{i} P\left(n_{i} | \lambda_{i}(\mathbf{s}_{j})\right)$$

• Bringing modern analysis tools to MeV astronomy!

Open-source Python library

import cosipy

Poisson likelihood-based forward folding analysis

$$\mathscr{L}(\mathbf{s}_{j} | \mathbf{n}_{i}) = \prod_{i} P\left(n_{i} | \lambda_{i}(\mathbf{s}_{j})\right)$$

Bringing modern analysis tools to MeV astronomy! \bullet

Open-source Python library

import cosipy

Poisson likelihood-based forward folding analysis

$$\mathscr{L}(\mathbf{s}_{j} | \mathbf{n}_{i}) = \prod_{i} P\left(n_{i} | \lambda_{i}(\mathbf{s}_{j})\right)$$

3D Compton Point Spread Function

Bringing modern analysis tools to MeV astronomy!

Open-source Python library

import cosipy

Poisson likelihood-based forward folding analysis

$$\mathscr{L}(\mathbf{s}_{j} | \mathbf{n}_{i}) = \prod_{i} P\left(n_{i} | \lambda_{i}(\mathbf{s}_{j})\right)$$

Compatibility with 3ML for multi-wavelength studies

3D Compton Point Spread Function

- We'll have yearly (beta) public cosipy releases \bullet
 - First released this past March, 2024
- Each release is accompanied by a set of realistic simulated data and "challenges"

Israel Martinez-Castellanos 15

Eliza Neights

 10^{8}

- Very first attempt: fitting the spectrum of GRB 130427A
 - Real LAT data —
 - Simulated COSI data —
- The machinery is working, but it still needs to \bullet be tuned

- COSI is launching in 2027 lacksquare
 - Sensitive between 0.2-5 MeV _
 - It can resolve emission lines _
 - Wide-field-of-view imager -
- The cosipy library and 3ML will allow to perform joint analyses with Fermi-GBM and Fermi-LAT \bullet

cosi.ssl.berkeley.edu

Posters:

- Savitri Gallego:
 - #26: Background sims
- Robin Anthony-Petersen:
 - #27: Event reconstruction

