Polarimetry of γ -Rays Converting to e^+e^- Pairs with Silicon-Pixel-Based Telescopes

Denis Bernard,

Laboratoire Leprince-Ringuet (LLR)

Nucl.Instrum.Meth.A 1066 (2024) 169590

11th International Fermi Symposium, College Park, Sept. 9-13, 2024

$MeV \gamma$ -Ray Polarimetry: Science Goals

- Main targets: bright sources, deciphering emission mechanism
 - Blazars: leptonic synchrotron self-Compton (SSC) or hadronic (proton-synchrotron)
 - Zhang and Böttcher, Astrophys.J. 774, 18 (2013)
 - Pulsars: Tagging the onset of Curvature Radiation (CR)

Harding and Kalapotharakos, Astrophys. J. 840 73 (2017)

- Further away (pending on statistics)
 - LIV search (Lorentz-invariance violation), induced dilution of the GRB polarization signal during propagation
 F. Kislat, arXiv:1907.06514 [astro-ph.HE],
 - Axion search,
 ALPs (Axion-like particles)

A. Rubbia and A. S. Sakharov, Astropart. Phys. 29 (2008) 20

G. Galanti, Universe 10 (2024) 312

Polarimetry

- P source linear polarisation fraction
- $A \quad \gamma$ -ray conversion polarization asymmetry
- ϕ event azimuthal angle
- ϕ_0 source polarization angle.

1

QED Polarization asymmetry

Close to 0.2 in energy range within reach

Polarimetry with pairs: e^+ and e^- Multiple Scattering

Adapted from D.Bernard, Nucl. Instrum. Meth. A 729 (2013) 765 Dilution, D, as a function of pathlength after conversion, normalized to radiation length, t

Most polarimetry information lost before leptons exited conversion wafer

Performance of Silicon Strip detectors: The Fermi-LAT

• Effective asymmetry peaks at $A \approx 0.0125$ for $\approx 200 \, {\rm MeV}$

- A dilution factor $A/A_{
 m QED}$ of a factor of 0.07
- Expected $\sigma_{\rm P} \approx 0.15$ on bright source, $1.5 \times 10^{-3} {\rm MeV cm^{-2} s^{-1}}/E^2$, exposure $\epsilon \approx 2 \times 10^{11} {\rm cm^2 s}$

D. Bernard, Fermi Symposium 2022 and Nucl. Instrum. Meth. A 1042 (2022) 167462 (Fig. 21)

Estimate confirmed with full *Fermi*-LAT study (Vela, 15 years), A. Laviron+ PoS ICRC2023 (2023) 721 and Talk at this Symposium

$Strips \rightarrow Pixels$

		<i>Fermi</i> -LAT	AMEGO-X
	Layer	2 single-sided SSD	Pixels
	Converter ?	Tungsten foils	All Si (no Tungsten foils)
e	Si Thickness ($\mu { m m}$) per layer	$2 \times 400 = 800$	500
р	Pitch / size (μm)	228	500
d	Layer spacing (cm)	3.3	1.0

Analysis

- Pair conversions selected (Compton rejected) based on MC information
- No additional trigger emulation
- Track reconstruction based on information in conversion layer + next layer

As in my previous D. Bernard, Nucl. Instrum. Meth. A 1042 (2022) 167462

- Pixels with > 0 deposited energy recorded.
- Recorded pixels with a side in common clustered
- Exact number of clusters required
 - 1 in conversion layer
 - 2 in next layer
- Track directions reconstructed from (geometric) cluster barycenters
- Event azimuthal angle computed from track azimuthal angles

Event Fractions

- Selection efficiency peaks at $\approx 45\,\%$ for $E\approx 50\,{\rm MeV}$
- Drops at low energies due to Compton scattering prior to conversion
- Drops at high energies due to both tracks create same cluster in next layer

Results

- A plateaus at \approx 0.09 at low energies, dilution factor $D = A/A_{\rm QED} \approx 1/3$
- Figure of merit peaks for $E \approx 20 \,\text{MeV}$ (sizable between 10 100 MeV)

Energy-Integrated Performance

Energy bins, E_k , events weighted with weight A_k , \Rightarrow

$$\sigma_P = \sqrt{\frac{2}{\sum_k A_k^2 N_k}} \qquad \qquad N_k = \frac{\eta \,\epsilon_k \,F_0 \,\Delta E_k \,H(E_k) \,T \,m}{E_k^2},$$

• Differential flux F_0/E^2 , $F_0 = 10^{-3} \,\mathrm{MeV}/(\mathrm{cm}^2 \mathrm{s})$,

- m detector silicon mass (g), T duration (s)
- H(E_k) total photon attenuation (cm²/g) at photon energy E_k
 NIST XCOM data base
 (i.e. effective area per unit mass)
- ΔE_k width of energy bin k, ϵ_k selection efficiency,
- Exposure factor $\eta = (1 \cos(\theta_{\rm cut}))/2 \approx 0.375$.

Energy-integrated figure of merit, $\sum_{k} A_{k}^{2} N_{k} / (T m) = 81.(\text{year} \cdot \text{kg})^{-1}$,

For a 5 year, 30 kg AMEGO-X mission, $\sigma_P \approx 0.013$ within reach.

Energy-Integrated Performance: Variation with Detector Parameters

Energy-integrated figure of merit, $\sum_{k} A_{k}^{2} N_{k} / (T m)$

• Driving parameter of the overall performance is clearly wafer thickness e.

(Total silicon mass kept constant)

Conclusion

- Performance of Silicon-pixel based pair polarimeter estimated with simple model
- Main performance driving parameter, wafer thickness
- Excellent prospects for the brightest sources of the MeV gamma-ray sky.

$$\sigma_P= egin{array}{ccc} 0.15 & (\ {\sf LAT} & 15\ {\sf years}\) \\ 0.013 & (\ {\sf AMEGO-X} & 5\ {\sf years}\) \end{array}$$

On a bright Crab-like source.

Back-up slides

Deciphering Emission Mechanism in Blazars with γ -Ray Polarimetry

• Blazars: active galactic nuclei (AGN) with one jet pointing (almost) to us

leptonic synchrotron self-Compton (SSC)

or

hadronic (proton-synchrotron) ?

- high-frequency-peaked BL Lac
- X band: 2 -10 keV
- γ band: 30 200 MeV
- SED's indistinguishable, but
 - X-ray: $P_{
 m lept} pprox P_{
 m hadr}$
 - γ -ray: $P_{
 m lept} \ll P_{
 m hadr}$

"Maximal" Π : assumes no \vec{B} turbulence

RX J0648.7+1516

Tagging the (Curvature Radiation CR – Synchrotron Radiation SR) Transition in Rotation-Powered Pulsars

Polar-cap model of Crab-like pulsar

- MeV component is SR from pairs
- GeV component is either CR (solid line) or SR (dashed line)

Harding and Kalapotharakos, Astrophys. J. 840 73 (2017)

Pair Opening Angle: 1/E Scaling

D. Bernard, Nucl. Instrum. Meth. A 899 (2018) 85

Vertical line: high-energy asymptotic most probable value

 $\frac{1.6 \text{ rad} \cdot \text{MeV}}{E}$

H. Olsen, Phys. Rev. 131 (1963) 406

Tracking: Single-Track Polar-Angle Resolution

Curve, angular resolution of optimal (Kalman filter) tracking, eq. (1) of arXiv:1902.07910

- for conversion at the very bottom of a layer,
- an asymptotically large number of planes, and
- dE/dx energy loss neglected

A two-layer measurement is close to optimal at low track p (low photon E)

Optimal Sample Combination

 $\frac{\mathrm{d}\Gamma}{\mathrm{d}\phi} \propto (1 + AP\cos 2\phi), \quad \Rightarrow \quad P = \sum_{i}^{N} w_i / (A \times N) \quad \text{with weight } w_i \equiv 2\cos 2\phi_i$

K samples. Weight each with inverse variance , $P = \left(\sum_{k} \frac{P_k}{V_k}\right) / \left(\sum_{k} \frac{1}{V_k}\right)$, with $\frac{1}{V_k} = \frac{N_k A_k^2}{2}$ (eg. D. J. Shahar Open J. Stat. 2017, 7, 216.)

So,
$$P = \sum_k \sum_i^{N_k} w'_{i,k}$$
 with $w'_{i,k} = \frac{A_k w_{i,k}}{\sum_\ell N_\ell A_\ell^2}$, precision $\sigma_P = \sqrt{\frac{2}{\sum_k N_k A_k^2}}$

Weight each event by the average asymmetry of the sample to which it belongs.

Figure of merit of sample k, $N_k A_k^2$, of total sample, $\sum_k N_k A_k^2 = N \sum_k \epsilon_k A_k^2$.

Method

ASAP: As Simple As Possible

- Target
 - "Infinite" number of "infinite" Si planes, z < 0
 - \Rightarrow All photons convert, (thin detector, effective area \propto silicon mass)
 - Dead material neglected
- Point-like source,
- Isotropic exposure map ~~ with $\cos\theta > 0.25~{\rm cut}$

(approx $\theta < 75^{\circ}$)

- Assume the telescope provides γ sample associated with known
 - γ direction (exactly, that of the source) and
 - γ energy
- Electromagnetic physics simulation EGS5, version 1.0.5, H. Hirayama et al., SLAC-R-730, 2005
- No background

Wafer Thickness e Variation

Number of incident photons, therefore effective area, therefore Si mass, kept unchanged

- ϵ decreases mildly with increasing e (increase of the fraction of events with too large a number of clusters in the 2nd layer)
- A decreases with increasing e due to multiple scattering

Layer Spacing d Variation

- Increasing the wafer spacing obviously improves the selection efficiency at high energies (better separation of small opening angles)
- A barely affected, except at high energy

Pixel Size p Variation

- Smaller pixels improves mildly ϵ at high energy (better separation of small opening angles)
- Smaller pixels degrades mildly ϵ at low energy (larger fraction of events with too many clusters in the 2nd wafer).
- A barely affected (the additional contribution of the pixel size to the ϕ angular resolution not the dominant factor) except at high energy