WASHINGTON, DC

Future Constraints on the Reionization History from GRB Afterglows

Nicholas White (GWU), Tzu-Ching Chang (JPL), Adam Lidz (UPenn), Alex Kann* (Goethe University Frankfurt), Andrew Levan (Radboud Univ) & the *Gamow Explorer* team

Based on Lidz et al., 2021, ApJ 917, 58 <u>https://arxiv.org/abs/2105.02293</u> Kann et al., 2024, A&A, in press <u>https://arxiv.org/pdf/2403.00101</u>

* Alex Kann passed away March 2023

11th Fermi Symposium Sept 12, 2024

Redshift Distribution of LGRBs

Mostly Swift + ground follow up determined redshift

I Ith Fermi Symposium Sept 12, 2024

Epoch of Reionization

Robertson+ 2010

- When? (Fraction of volume in ionized phase versus redshift)
- How? (Bubble Sizes)
- Who? (Properties of Ionizing Sources)

11th Fermi Symposium Sept 12, 2024

GRB afterglows probe the ionization state of the IGM during reionization

Key signature is Ly- α red-side damping wing (Miralda-Escudé 1998). In a significantly neutral universe, IGM damping wing optical depth leads to absorption far redward of Ly- α at source redshift:

 $\lambda \ge \lambda_{\alpha}(1+z_s)$

At e.g. $z \sim 8$ expect larger neutral fraction, shorter mean distance from GRB host to neutral gas, and smaller scatter which makes the damping wing stronger, less confusion with host DLA

See also Barkana & Loeb 2003, McQuinn et al. 2008

IIth Fermi Symposium Sept 12, 2024

GRB 130606A @ z ~ 5.91

VLT spectrum Ly– α red wing well fit by host only (low column) absorption, and nearly fully ionised IGM

Fisher matrix forecasts

- Damping-wing feature in each afterglow spectrum described by three parameter model.
 - NHI : column density of neutral hydrogen from local host galaxy.

- \blacktriangleright L : size of ionized bubble around GRB host galaxy.
- \rightarrow <x_{HI}> : average neutral fraction, approximated as uniform outside host bubble.
- Forecast <xHI> errors, marginalized over L, NHI.

Fiducial ionization history

- Neutral fraction evolution model assumed.
- Consistent with current constraints.

Bubble size distribution

- Distance from GRB host to first neutral region extracted from reionization simulations (McQuinn+2007).
- Partly accounts for patchiness of reionization process.

Lidz+ 2021

Assumed Host Galaxy NHI Distribution

- Empirical: from current GRB afterglow measurements, mostly at lower redshifts (Tanvir+2019).
- May be pessimistic assumption because escape fraction likely increases with redshift.

Lidz+ 2021

Forecasted constraints on reionization

Each spectra assumed to have SNR=20 per R=3,000 resolution element at the continuum.

- Blue: 20 z > 6 GRBs
- Red: 31 z > 6 GRBs
- Black: 80 z > 6 GRBs

11th Fermi Symposium Sept 12, 2024

Reionization Constraints

High-z GRBs provide competitive constraints on the reionization history, that sample typical galaxies out to the highest redshifts

Follow up Spectroscopy Requirements

Predicted IR afterglow brightness by Kann et al (2024) based on 140 observed afterglows transformed to a common J-band z of 6

Follow up Spectroscopy Requirements

Afterglow must be bright enough to obtain NIR R > 2500 spectroscopy with SNR of >20

- Ground using 6 to 10m telescopes (Magellan, Keck, GTC, Gemini, VLT) within hours
- Ground ELTs within 12 to 24 hr
- Space JWST 2-3 days disruptive TOO

Delays in obtaining redshifts for GRBs in the Swift era

Swift follow-up retrieves only one third of GRB redshift!

Of that only Swift UVOT redshift determinations are within the window required to trigger follow-up NIR spectroscopy

The response times required for an initial photo-z redshift determination and R > 2500 NIR spectroscopy are indicated

An onboard photo-z telescope essential to rapidly recover >80% of redshifts

Compiled by Andrew Levan and published in Kann et al (2024)

GRB Missions proposed to ESA (THESEUS), JAXA (Hi-Z Gundam), and NASA (Gamow Explorer) optimized for rapidly identifying high redshift GRBs using onboard IR telescope

Rapid follow-up by large telescopes is critical to catch the afterglow when it is at its brightest!

Follow-up Observations THESEUS

>6m aperture NIR R>2500 resolution spectroscopy

Follow-up Observations

>6m aperture NIR R>2500 resolution spectroscopy

Follow-up Observations

>6m aperture NIR R>2500 resolution spectroscopy

GRBs Complement other Reionization Probes

Like dark energy or the Hubble constant there are many complimentary & independent ways to make the required measurements!

- GRBs have simpler unabsorbed continuum than quasar backlights, probe less-biased regions, access higher redshifts ($z \ge 9$).
- Stacked measurements of Lyman-break galaxies (e.g. from JWST, Umeda+ 23): greater abundance than GRBs, access to high redshifts, but continuum-fitting uncertainties, DLA contamination
- Lyman- α Luminosity functions probe source counts, but not ionization state of intergalactic medium
- Redshifted 21 cm emission measurements are complimentary, but grapple with strong foreground contamination plus instrument challenges, with so far no signal detected
- CMB optical depth gives only integral constraint. Kinetic Sunyaev-Zel'dovich effect requires exquisite component separation.

Summary

- GRBs have featureless simple power law continuum compared to quasar backlights, probe less-biased regions and potentially access higher redshifts z >~ 9
- Same spectra also measure many metal absorption lines, constraining chemical enrichment history in lower mass galaxies, plus also directly measure escape fraction from host galaxy
- Requires future GRB missions optimized to maximize number of high redshift GRBs, with an onboard photo-z IR telescope to provide rapid (within ~1000s) high-z GRB alerts to trigger large (>6m) NIR spectrographs

Backup

IIth Fermi Symposium Sept 12, 2024

JWST Lya Damping Wing in 26 Bright Continuum Galaxies 1.0 Neutral Faction <x_{HI}> 0.8 0.8 $F_{\lambda}/F_{\lambda}(3000 \text{ Å})$ 0.6 0.6 QSO Dark Pixels $\chi_{\rm HI}$ GRB Damping Wing Absorption 0.4 0.4 QSO Near Zone .AE Lva LF Gamow 0.2 0.2 Robertson+ 15 ♦ LAE Clustering LBG Lyα Fraction Finkelstein+ 19 0.0 0 0 12 8 10 14 Redshift z Redshift

- Umeda et al (2023) construct 4 composite spectra from 26 individual JWST PRISM spectra binned by redshift, and find a clear evolution of spectral flattening towards high redshift
- The redshift evolution indicates reionization history, consistent with CMB measurements, but no constraint on speed of reionization
 - Individual GRB JWST spectra are 100-1000 times brighter (2-3 days after GRB trigger), providing a precise measurement for individual galaxies to distinguish between reionization models

Follow up Spectroscopy Strategy

Follow up Spectroscopy Requirements

Predicted IR afterglow brightness by Kann et al (2024) based on 140 observed afterglows

Kann et al (2024)

11th Fermi Symposium Sept 12, 2024

In Memoriam: Alex Kann

A key member of the GRB Community, he is greatly missed

at the age of 46

See Hessian Cluster ELEMENTS in Memoria

Kann et al. 2010, Astrophysical Journal, Vol 720, p 1513

t (days after burst in the observer frame assuming z = 1)

10-1

10⁰

10¹

 10^{2}

IIth Fermi Symposium Sept 12, 2024

10-4

10-3

10-2