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Introduction - GRAMS

=  Gamma-Ray and AntiMatter Survey.

=  GRAMS is part of NASA's Physics of Cosmos mission, selected for development under NASA APRA
GRANT.

= QObjectives: observe both MeV gamma-rays and search for indirect dark matter.

= GRAMS, uses Liquid Argon Time Projection Chamber (LArTPC) technology, represents a novel
approach with enhanced sensitivity to gamma-rays and antiparticles, offering a cost-effective and
high resolution.

= pGRAMS@US is a prototype balloon flight which is scheduled to launch in 2025/2026.

o We are developing a 30x30x20 cm LArTPC detector for the flight.

o Goal is to detect gamma ray events and reconstruct the trajectory of charged particles.
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Motivation | — MeV gamma-rays survey

Gamma-rays in MeV energy band are under-
explored, hence called MeV-gap.
Lack of large-scale detector to provide a high

sensitivity to detect gamma-rays in MeV-gap region.
GRAMS will have an improved sensitivity by an order
of magnitude for Long Duration Balloon flight and by

another order for satellite mission.

In fact, MeV-gap survey opens to wide range of
astrophysical studies.
For example, possible existence of transitional

physics processes and nuclear lines in astrophysical

events.

https://doi.org/10.1016/j.astropartphys.2019.07.002
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Motivation || —antimatter survey

Fermi LAT observed surplus gamma-rays near the center of the galaxy. Could be due to Dark matter (DM) or Millisecond
pulsars. {Fermi LAT GeV excess}
AMS result showed an excess of antiprotons. Explanation: DM annihilation or uncertainties in the background model.
{AMS-02 Antiproton excess}
GRAMS will have the capability to explore this area further by measuring the flux of antideuterons/antiheliums in low

mass region.

Signal to background ratio about 400 in the low energy region provides a background free condition for DM searches.
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GRAMS detector design

= Composed of LArTPC has a dimension of 1.4m x 1.4m x 20cm and surrounded by two layers of Plastic Scintillators.

= Primary objective of TPC is to reconstruct the 3D track and PS determines the velocity of a charge particle.

= MeV gamma-ray measurements: Plastic scintillator as veto; TPC as Compton camera and calorimeter.
= Antideuteron Detection: Plastic scintillator as Time-of-Flight (TOF); TPC as tracker and calorimeter.

= TPCreconstruct the 3D tracks by collect scintillation light and ionized electrons.
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MeV gamma ray detection method

= Dominant interaction process in the LArTPC is a Compton scattering for MeV-gamma-ray

survey.

= Consider 3 possible cases of gamma interactions inside the TPC.

= At least three Compton event circles are required to pin-point direction to gamma ray

source.

" This requires determination of accurate energy and direction of an incident gamma ray.
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Antideuteron detection method

= |Low energy antideuterons slow down in LAr and combine to form excited exotic atoms.

= Excited exotic atoms emit X-rays during de-excitation and eventually annihilates producing pions/protons.
= X-ray energy depends on type of antiparticle and target atom.

=  Combining all these things together make a unique signature for detecting antideuteron with a nearly a

background free condition.
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Status of GRAMS R&D

1. eGRAMS: An engineering balloon flight
e Successfully launched in July 2023 @JAXA Taiki Aerospace Research Field in Japan
e First LArTPC operation at stratosphere (€10 min level flight at > 25 km)
e TPC:(10x 10 x 10) cm designed by Waseda University with a PMT and 3 charge channels
* Use of pressure vessel for RPi/DAQ
2. Beam Test: An anti-proton beam test
* Scheduled @J-PARC in 2024
* \Validate LArTPC performance as an antimatter detector by measuring atomic X-rays/annihilation
products
3. pGRAMS: A prototype balloon flight
* Scheduled to launch in 2025/2026 from Arizona USA
 TPC (30x30x20) cm designed at Northeastern University with 180 charge and 32 SiPM light signal
readout channels



Status of GRAMS R&D
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Micro-GRAMS LArTPC detector at NU

= Dimension of (10 x 10 x 10) cm with cathode mesh near the bottom and anode tile on the top.

= Anode tile consist of x and y strips separated by 3 mm and has a total of 64 strips.
= Each strip is connected to 64 charge signal channels, each of which is read out by a charge-sensitive preamp.

= We deploy an array of SiPMs at the base of the TPC to collect light read out with a total of 4 channels.

=

Charge
Collection
Tile (Anode)

x64 Charge
Pre-Amriiriers

Drift E-field
43 MQ

’
m

- //;§ - };}uxnaa»\\\\\; i), ‘ 3 ! . o 10 MQ
P —— 3 ® & ioem
<é§ R : S M " \ ‘ X18< ¢
° 10 MQ
. ?
¥ Field Rings o :
; S om s
Cathode mesh -HV (~5 kV)

x16 SiPM Array °

B LeyV
y Jon LeyVa (576 mm?)




LArTPC cryostat

= Full 3D design of chamber and TPC at Northeastern University.

=  During the operation, the chamber is filled with LAr till TPC is fully submerged.

=  Maintain the chamber at constant pressure and temperature during the data taking.
= A CAEN digitizer to record the cosmic muon and Co-60 events.

By JC @NU
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Preliminary data analysis and track reconstruction

=  NU Lab Achievements: Muon track reconstruction
* Record all the charge channels immediately after SiPM hits, search for signals above a specific threshold to

reconstruct a muon track.

05/29 11:02:13 LAr Run, Emmas Tile Full Drift Length 90°, Vgist=-1.5kV, Q-thresh=22mV - Baseline Corrected Data, Event ID:25

Y32
Y30
Y281
Y26
Y241
Y22 L e e —————————————
Y201
Y18

“%

S
=<
=
'S

=<
=
N

| )
Y101 Qg/

ight & Charge Channel
S
%

By Jon LeyVa

| I
0 50 100 150 200 250 300
Time (us)

11




Preliminary data analysis and track reconstruction

=  NU Lab Achievements: Muon track reconstruction
* Record all the charge channels immediately after SiPM hits, search for signals above a specific threshold to

reconstruct a muon track.
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Conclusion and outlook

= GRAMS: Optimized for MeV gamma-ray observations and indirect dark matter searches.

=  The first large-scale LArTPC detector above the ground and will have highly improved sensitivity.

" Encouraging advancements are being made with the ongoing R&D of the GRAMS prototype
detector.
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Outline

" |ntroduction GRAMS experiment

=  Project motivations and objectives

= Design concept of the GRAMS Detector

= MeV gamma-ray and antideuteron detection methods

= Status of MicroGRAMS detector R&D at Northeastern University

= Detector hardware and data analysis
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Details

Conservative design: To improve the angular resolution, a set of event selections was also applied;
Compton scatterings must be spatially separated by > 10 (2) cm, and pair-produced electrons and
positrons must stop inside the sensitive volume and leave tracks > 2 (0.4) cm long (with detector

upgrades).
Energy resolution are adopted”: The energy resolution of LArTPC is estimated from measurements

by other experiments deploying similar detectors; DarkSide-50 and nEXO measured ¢ E ~ 5% at
41.5 keV and ~ 1% at 2.5 MeV, respectively

20



Schematics of current TPC detector at NU

=  Pump out the chamber using roughing pump and turbo pump tilll we reach about 107-5 torr pressure.
= Liguid argon is directly filled via ullage pipe.

= Through the filling procedure, we cool down the chamber by running cold head.

= Monitor the temperatures and pressures inside the chamber using House keeping software.
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Current pulse processing - conditioning

= (Cascade JFETs: Reduce the impedance imposed by the Cf and increase the signal bandwidth

= CM=Cf(1+Av)

=  Current pulse is integrated using op-amp LM6171 using CSP configuration with Cf, Rf.
= Qutput voltage is amplified in second stage

= Signal is sent to digitizer.

Current integrator:
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LArTPC: determination of interaction position

= When a charged particle interacts with Ar, there will be a generation of ionization

electrons and scintillation VUV light.
" The electrons drift towards the anode tile due to e-field setup.
= Anode tile is arranged with X & Y strips = a hit = x,y coordinates of an interaction point.
= The VUV light produced is collected by an array of SiPMs at the base of TPC.
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Analog signal processing board sV configuration (e

= The TPC has a SiPM board at bottom, measuring
approximately 8x6 cm.

= 16 SiPMs are grouped into sets of 4, collectively producing
one light output.

= Signal amplification for the SiPMs is done by a circuit with
adjustable gain, utilizing an operational amplifier
configured in a transimpedance setup.

= Additionally, there's a charge-sensitive preamplifier circuit
for the detector tiles, followed by a second-stage amplifier.

Charge sensitive preamp

‘MGRAMS chorge preomp v5 Em’.‘ [E@E5

By Jiancheng Zeng By Jon LeyVa i



Light signal processing - conditioning

= First, Digitizer usually have limited resolution for a dynamic range.

= The current from SiPM is very weak and may seem absent due to accumulate in the first bin.

= To amplify the weak signal, we combine four SIPMs (Silicon Photomultipliers) in parallel and output is
amplified using an op-amp in a transimpedance configuration.
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Setting up the particle detector

=  Pump out the chamber using roughing pump and turbo pump tilll we reach about 10”-4 torr pressure.
= Liguid argon is directly filled via ullage pipe.

= Through the filling procedure, we cool down the chamber by running cold head.

= Monitor the temperatures and pressures inside the chamber using House keeping software.

_ Signals out & housekeeping -
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Tested with scope and setup the DAQ system

= Oncethe TPCis fully submerged into LAr and system is stable and ready, we record the data .
= Signal channels are transmitted via 50 pin D-sub with co-ax cable to digitizer.
= We can directly feed the signal to scope and do waveform analysis.

= Do signal processing with CAEN digitizer and see the output in computer.

Top Flange

Trigger holdoff 1000 ns 1000 ns

Timing filter rise time 200ns 200 ns

DOI:10.13140/RG.2.2.22656.79360
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CAEN digitizers V2740B (Vx2730)

= |n experiment, we have many channels and may events to readout.

=  We need system with high sampling rate, faster response, configurable, etc.

= /2740 digitizers: 64-Channel Digital Signal Processor (waveform digitization, digital pulse processing)

=  Almost any logic can be implemented that is required for signal processing such as Coincidence/veto,
Complex Trigger Logic, Gate and Delay generator, etc.

= Can be controlled and programmed via inbuilt USB or ethernet cable.

V27408 Features of V2740B

. = = Dynamic range: 2Vpp

= 64 Channels, bandwidth of 50MHz
at -3dB

= 125MS/s rate with 16 bits
resolution

= RMS noise is about 120uV.

= Common and individual trigger

= Timestamp resolution of 8ns (fine
timestamp in ps range)

= 2.5 GB of total acquisition memory
(DDR4)

= Multiple boards can be synced at
62.5MHz clock frequency.

vvvvvv

vvvvv

.....
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LArTPC cryostat

= Full 3D design of chamber and TPC done by JC. TPC is supported by 3D printed rods.
=  During the operation, the chamber is filled with LAr till TPC is fully submerged.
®= Maintained at constant pressure and temperature during the data taking.

Anode Tile
Field Cage

3D Printed TPC

Supported TPC
support rod
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Charge and light sighals production in Sensors

= When a free charge g moves towards the metal strip, it induces rate of change of the charge =2
current(l) at anode strip.
= |f the light is captured by SiPM via photoelectric effect, it produce electron and hole pair.

= |fit happens in avalanche region, then each photoelectron get amplified which in turn produce a short
pulse of current.

" |n both cases, signals are quite small ~ ImV.
= These require conditioning before we digitize them.

‘ Yo photon g
p++
q l v electronsl 4 VO.Spm
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Signal analysis by waveform visualization

=  When interaction happens in the TPC, it produces flash of light which are instantly detected by
SiPM1 and SiPM2.

= |mmediately after that, we can see CSP 1 collecting the ionized electrons for about 4us.

= Such events are called coincident events.

SIGLENT M 20.0us/ Delay:81.6us

Sa 280MSals




V2740B (Vx2730) digitizer architecture

= The system continuously samples analog input at a rate of 125MS/s using its built-in ADC and stored
in a circular buffer memory by the FPGA.

= When a trigger signal is received, the buffer is frozen for readout.

= Users have a flexibility to customize the trigger logic and wave processing.

= Users also have an option to develop their own custom data acquisition software on an embedded
Linux system using the scisdk library provided by CAEN.

Variable Gain (2745 only)
: ' Wave Output DDR Arm® Y
Y Inputs = 3 N 5 [— : : > COMM < >1/10 GbE
2 ADL Processing FIFO 2.5GB (Linux) & S CONET?
T -
INTCLK ——3 l ‘
EXTCLK == PLL Trigger . .
ko b{c FPGA Programming or Firmware
//Os

www.caen.it

Colored Blocks represent @R  User-customizable parts
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LArTPC: E-field setup and tile design (x,y,z,t,E)

=  Supply the —ve HV to setup a uniform e-field inside the TPC,

= |f there exist free charge (-Q), drift towards the anode tile due to e-field.
= Anode tile is arranged with X & Y strips = hits = x,y coordinates of —Q

Energy (E) &< charge amplitude.

Charge
Collection
Tile (Anode)

Cathode mesh HV (~5 kV)

x16 SiPM Array

(ET7C vara2)

L ol il

ol W W SN

X Channel

By Jon LeyVa @ NU

Z = f(v, t)
where v = f(-HV)
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Current pulse processing - conditioning

= (Cascade JFETs: Reduce the impedance imposed by the Cf and increase the signal bandwidth
= CM=Cf(1+Av)

=  Current pulse is integrated using op-amp LM6171 using CSP configuration with Cf, Rf.
= Qutput voltage is amplified in second stage.

Signal Out
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Silicon Photomultipliers (SiPM) pulse amplification

= Digitizer usually have limited resolution for a dynamic range.

= SiPM (VUV&VIS) pulse amplification is necessary before
digitizing it.

= Combine four SIPMs in parallel and output is amplified using an
op-amp in a transimpedance configuration.

Potentiometer

Cathode

+HV O

Anode

SiPM 1

“\MWA—O
To Digitizer

Vo= -2V

2x2 SiPM grid

LMH6629

SiPM ampilification schematic diagram




How does Sci-Compiler work?

= |t uses a prebuild library set containing IP blocks with complex functionalities and can be
connected with other IP blocks.

= Generates the VHDL code starting from the user design.

= Executes Xilinx Vivado in background to compile the firmware and generate the bitstream.

=  Converts the bitstream in the proper configuration file compatible with one of the supported
platforms.

= For example: Design a simple digital circuit.

b @[16] I IN; ouT @ [32] |Ni ouT |
INT @ IN2Z IN 2

) OO

a = b*c+5; 1

if (a=14) o=1; else 0=0;

TR L = 1 Multiplier )
= 1 Adder "
= 1 Comparator
www.caen.it = 1 Multiplexer
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2740/2745 Front Panel and LED behavior
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LArTPC: E-field setup and tile design (x,y,z,t,E)

= R&D for next generation LAr-TPC for astrophysical survey and dark matter detection.
" Purpose: design, construct and develop the detector including optimizing the geometry,
electronics and DAQ, testing & calibration, and software development for data analysis.
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