GRAINE:

Balloon-borne emulsion telescope project for sub-GeV/GeV gamma-ray observation with high angular resolution & polarization sensitivity Nagoya University(Japan) Yuya Nakamura for GRAINE Collaboration

launching in GRAINE2023 at Australia

higher angular/spatial resolution detector

Detector: Nuclear emulsion film

Detector: Nuclear emulsion film

Detector: Nuclear emulsion film

Performance for gamma-rays

high angular resolution, polarization sensitivity

7 Galactic Center GeV Excess <u>Radial profile</u> (latitude dependency of the Excess flux)

GRAINE project

Cosmic gamma-ray observation w/ balloon-borne emulsion gamma-ray telescope

GRAINE project

2004- Technology development

2011 1st Balloon experiment (0.01m² @Japan w/ JAXA)

Demonstration phase

2015 2nd Balloon experiment (0.38m²@Australia _{w/ JAXA})

2018 3rd Balloon experiment (0.38m²@Australia w/ JAXA)

Scientific phase

2023 4th Balloon experiment (2.5m²@Australia w/ JAXA)

2027? 5th Balloon experiment

Observation for the Vela pulsar in the 2018 experiment

highest resolution in sub-GeV

Preliminary predictions for GRAINE2023 observations

GRAINE2023 @Australia

time-stamper(new model) (light weight、improving time resolution 1->0.1sec.)

8

9

converter 90 films x 20)

altitude monitor

pressure vessel gondola

Launching on Apr. 30th, 6:32am

Balloon was successfully released by the JAXA team

photo by JAXA

Our gondola

1111

13

Data taking w/ the high-speed emulsion scanning system

After

14706

Remove

penetrating tracks

Raw data ~ 2×10⁵ tracks/cm²

After

veto

Pair

topology

33484

All(Raw)

Raw)

D(

10000

100

scanning & γ -ray detection is ongoing!

1500/1800 films have been scanned (80%) >10⁷ γ -ray events have been detected

Detected "e-pair" event topologies

Performance of the angular measurement Internal calibration source

 $\begin{array}{l} multiplicity > 10 (\tan \theta_{v} < 1.0) \\ \underline{1.3 \times 10^{4} \ events} \\ (searched \ with \ 156 \ films) \end{array}$

incident angle $(tan\theta_{\gamma})$: 0.0-1.0 energy range: 100-400MeV <u>6.8×10⁶ events</u> (searched with 140 films)

Performance of the angular measurement

Performance of the angular measurement (2) External calibration source Extrapolated positions at the height of the launching plate 17 cm Cosmic rays (protons, etc.) 17 cm Cosmic rays (protons, etc.)

connecting our gondola and the balloon

Atmospheric gamma-ray observation²⁰ at the balloon attitude(~36km)

Energy [GeV] We understand our main background and the detector response

Summary

Prototype Phase

2004- Technology development 2011 1st Balloon experiment (0.01m² @Japan w/ JAXA)

Demonstration phase

2015 2nd Balloon experiment (0.38m²@Australia w/ JAXA)

2018 3rd Balloon experiment (0.38m²@Australia _{w/ JAXA})

Scientific phase

2023 4th Balloon experiment (2.5m²@Australia w/ JAXA)

2027? 5th Balloon experiment

GRAINE project : Cosmic *γ*-ray observation w/
the high angular resolution
& the polarization sensitivity

We conducted 4th balloon experiment in 2023 Starting of the scientific observation

- Observation of the G.C. region
 w/ the highest resolution
- Trying to measure the polarization of the pulsar

Analysis in GRAINE2023 is ongoing now

-Basic performances are well consistent with the expected values

- -Observed atmospheric γ -ray is consistent
- with the previous experiments
- -Analysis for the astronomical sources is ongoing

In the future, we want to conduct repeatedly balloon experiments

with larger aperture area / longer flight duration

*10m² apperture area

	Fermi-LAT	GRAINE
angular resolution@100MeV	6.0°	1.0 °
angular resolution@1GeV	0.80°	0.1 °
polarization	-	0
effective area@100MeV	0.25m ²	2.1m ² *
effective area@1GeV	0.88m ²	2.8m ² *

Differential Sensitivity

Shift the tomographic images and sum up the hit pixels <u>Searching for straight lines</u>

Atmospheric gamma-ray flux

Effect of the polarization measurement

completely new information !

unknown γ excess in the G.C.

lower contamination of the BG uncertainty

TimeStamper

Star camera in GRAINE2023

Towards Scientific Observation

Evaluation of the angular resolution

Evaluation of the energy measurement

Measurement of gamma-ray polarization in the pair production mode

Measuring the azimuthal direction is extremely challenging due to multiple Coulomb scattering in detector

Polarization observation

Flight Path

Alice Springs

27 hour flight duration in total (6:32 – 9:25 the next day)
24.3 hour level flight at 36km (8:30 – 8:47 the next day)
Telescope system termination (8:00 the next day)

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus A N

Latitude, longitude, altitude and time taken by JAXA

1600 km

Recovery on May. 1st 3:30pm

took a helicopter to search for the payload.

We collected everything by truck the day after this. Three days later, the film was shipped to Japan via refrigerated transport.

Fermi-LAT(DATA)

GRAINE(MC)

