Detecting High-Energy counterparts of gravitational waves with the Fermi Telescope

Samuele Ronchini, PennState University

Past achievements, current efforts and future challenges of multi-messenger astronomy

Past achievements:

Current efforts:

Future challenges:

Outline

☆ GW170817 and GRB170817A ☆ Detection of long merger-driven GRBs

☆ Real-time monitoring of GW counterparts Subthreshold searches targeted on GW candidates

☆ Multi-messenger detections in the 3G GW era \therefore Synergies with other EM facilities

Past achievements

GWs and related high-energy EM counterparts

Mildly off-axis: dim (if any) γ -ray

flash, peaking at lower energies. Cocoon shock-breakout from the jetejecta interaction. Afterglow peaking at hr/days after the merger

Off-axis: Afterglow barely detectable. KN only detectable. If there is a highly magnetized NS as remnant —> possible wind visible in the X-rays

GW 170817 and GRB 170817A

Abbott+17

Dim γ -ray flash, 1.7 s after the merger of two NS. Duration ~2 sec

Probability of random Fermi-GW coincidence of

$$L_{iso} = 1.6 \times 10^{47} \mathrm{erg/s}$$

$$P_{coinc} = 5 \times 10^{-8} = 5.3$$

- Main peak (Comptonized spectrum E_p ~ 180) keV) +soft tail (thermal spectrum)
- Minimum time scale variability of ~ 0.125 s
- No evidence of precursor emission
- No evidence of extended emission (possibly related to a long-lived NS remnant)

D'Avanzo+18

Pian+17

Broad picture completed with the observation of the GRB afterglow and Kilonova

What we know thanks to Fermi: origin of the γ -GW delay

$$-3 \times 10^{-15} \leqslant \frac{\Delta v}{v_{\rm EM}} \leqslant +7 \times 10^{-16}$$
$$\Delta v = v_{GW} - v_{EM}$$

Time delay budget

 $\Delta t = (1+z)(\Delta t_{jet} + \Delta t_{bo} + \Delta t_{GRB})$

e.g., Zhang+18

Connected to:

- Time needed to launch the jet —> merger remnant and launching mechanism
- Time to **break out** —> jet needs to move faster than the merger ejecta
- Time to reach the dissipation radius —> depending on the specific prompt emission mechanism

How to distinguish different scenarios with future joint detections:

- 1. If the total delay is **independent** and uncorrelated to the **GRB duration**, the former is mainly controlled by the jet launching process
- 2. If the delay is **correlated** with the **GRB duration** (connected with the dissipation radius) —> jet formation delay and break-out negligible

What we know thanks to Fermi: origin of the γ -ray flash

GW 170817 and Fermi-LAT

Fermi-LAT and short GRBs

LAT detected 5% of the GBM-detected short GRBs

Expected joint GW-LAT detection rate of 1-2 /yr

Ajello+18

Earliest upper limit at TO+1000 s

GW 170817 and Fermi-LAT

Fermi-LAT and short GRBs

LAT detected 5% of the GBM-detected short GRBs

Expected joint GW-LAT detection rate of 1-2 /yr

Ajello+18

Earliest upper limit at TO+1000 s

Fermi-LAT and GRB 211211A

Mei+22

- First long-duration GRB followed by the detection of a KN —> first merger-driven long GRB
- Located at 350 Mpc -> potentially detectable by LVK
- Detected by LAT at ~10^4 s
- Emission not compatible with the forward shock, but requires a thermal source of photons (likely the KN) as seeds photons for an Inverse Compton on the hot electrons accelerated by a lowly magnetized late jet

There might be more merger-driven GRBs out there than what we think GRB 211211A GRB 230327A Both potentially detectable in GW if driven D = 350 MpcD = 290 Mpc by NS+NS/BH Dai+24 Gompertz+22 10–12 s 6-8 s 10-4 10^{-3} + n10 Long GRBs (-s 10⁻⁵ Short GRBs GeV) [erg cm⁻²] e. 10⁻⁶ 1,000 1,000 100 100 1,000 10,000 Energy (keV) Energy (keV) Energy (keV) - 10-900 keV (GBM) 2,500 100 2,000 1,500 Fluence_{LAT}(0.1 -10⁻⁰ 1,000 500 —— 15–150 keV (BAT) 10⁻⁸ 10^{-7} 10^{-6} 10^{-4} 10^{-5} 40

- Long duration and high S/N allowed time-resolved spectral analysis with GBM+BAT
- Evidence of **compatibility with Synchrotron** emission in marginally fast cooling regime -> first time demonstrated for a merger-driven GRB

Time since BAT trigger (s)

Spectral softening explains the extended emission

3 230307A 10-3 Fluence_{GBM}(10 keV – 1 MeV) [erg cm⁻²]

- Non-detection by Fermi-LAT puts this GRB as **one** with the lowest ratio fluence_LAT/ fluence_GBM
- Very sub-luminous afterglow and **no GeV emission** requires a very low density of the circum-burst **medium** $n = 10^{-4}-10^{-5} \text{ cm}^{-3}$
- Values typical of circus-galactic medium and consistent with a merger with a **large galaxy offset**

GRB 211211A D = 350 MpcGompertz+22 6–8 s + n10 (⁻² s⁻¹) (m⁻² s⁻¹) **b** 10^{−6} 1,000 Energy (keV) Energy (keV) 2,500 2,000 1,500 1,000 Time since BAT trigger (s)

- Long duration and high S/N allowed time-resolved spectral analysis with GBM+BAT
- Evidence of **compatibility with Synchrotron** emission in marginally fast cooling regime -> first time demonstrated for a merger-driven GRB
- Spectral softening explains the extended emission

- Non-detection by Fermi-LAT puts this GRB as **one** with the lowest ratio fluence_LAT/ fluence_GBM
- Very sub-luminous afterglow and **no GeV emission** requires a very low density of the circum-burst **medium** $n = 10^{-4}-10^{-5} \text{ cm}^{-3}$
- Values typical of circus-galactic medium and consistent with a merger with a **large galaxy offset**

Broad multi-messenger picture

Broad multi-messenger picture

Current efforts

• trigger possible EM follow-up campaigns —> the discovery of other EM candidates could increase even more the joint detection significance.

G₩

Why to go subthreshold?

Untargeted

- Onboard triggering algorithm finds around 40 short GRBs / yr —> the untargeted search adds 80 short GRBs/yr (Burns+19)
- Candidate GBM events are required to have excess counts greater than 2.5 σ relative to background in one detector and at least 1.25 σ in a second detector
- Background population simulated shifting randomly in time the GW trigger times

Targeted

- The targeted search uses three template spectra to coherently forward model the detector response
- Search performed on several durations of time bins
- Candidates searched on a fixed time window around the GW trigger time

O1 and O2: $\Delta T = T_GW \pm 30$ s

O3: $\Delta T = [T_GW - 1 \text{ s}, T_GW + 30 \text{ s}]$

Untargeted

Distribution of the time

Targeted

What to do with non-detections: GW 230529

Case of GW230529

- 1. First NS merger with a component in the mass gap 3-5 M_{\odot}
- 2. Low mass ratio —> relatively high chance to have a remnant mass > zero
- 3. **Potentially EM-bright**

 $UL_{joint} (\Omega) = \min [UL_{BAT}(\Omega), UL_{GBM}(\Omega)]$

The upper limits are computed for several spectral templates, and the most conservative value is adopted

Several structures profiles for the jet are tested, modeling the structure as

$$L(\theta_v) = L_0 l(\theta_v)$$
$$L_0 = L(\theta = 0)$$

$$l(\theta_{v}) = \begin{cases} \sim 1, & \theta < \theta \\ f(\theta_{v}), & \theta > \theta \end{cases}$$

Constraints on the γ -ray emission from GW230529

What we can constrain with future γ +GW detections (and non-detections)

Future challenges

Prospects for O4 and O5

Prospects for O4 and O5

	BNS / yr		ľ
	GW	GW+GBM	GW
04	$7.4^{+11.3}_{-5.5}$	$0.17\substack{+0.26 \\ -0.13}$	15^{+15}_{-9}
05	67^{+104}_{-50}	$1^{+1.6}_{-0.8}$	140^{+143}_{-81}

BNS

Colombo+22

What we can do:

- Reasonably assume that **most of short GRBs are** driven by BNS mergers, while NSBH rarely have an emerging jet
- Consider the uncertainties in the rate of BNS and NSBH mergers
- For **BNS** —> Take into account the average detection rate of Fermi-GBM and build a GRB population model calibrated on past data
- For **NSBH** -> much more model dependent and subject to uncertainty in the EoS, jet launch mechanism, absence of any joint EM-GW detection

NSBH

Colombo+23

	Fraction of BNS over the total		Fraction of NSBH over the total	
	$\Delta\Omega_{90\%} < 100 \ \rm deg^2$	$\Delta\Omega_{90\%} < 10 \ \mathrm{deg}^2$	$\Delta\Omega_{90\%} < 100 \ \mathrm{deg}^2$	$\Delta\Omega_{90\%} < 10 \ \mathrm{deg}$
04	15 %	5 %	16 %	3.6 %
05	18 %	4.2 %	19 %	3.6 %

Petrov+22

GW sky localization

 $\Delta\Omega_{90\%}$

90% credible area of the sky localization

For both BNS and NSBH: $\Delta\Omega_{90\%} \sim 2000 \ \mathrm{deg}^2$ For S/N > 8 $\Delta\Omega_{90\%} \sim 30 - 50 \, \mathrm{deg}^2$ For S/N > 12

Cosmic Explorer (CE)

Evans+23

Main milestones for multi-messenger science

- Detection of NS mergers beyond the star formation peak
- Detection of **post-merger** signal —> nature of remnant
- Possibility to **detect and localize** minutes **before the merger**
- Drastic improvement in the **sky localization**

t at 12	BNS / yr		1
S/N cut	GW	GW+GBM	GW
ET	2×10^4	34^{+91}_{-21}	3×10^4

t at 12	BNS / yr		N
S/N cut	GW	GW+GBM	GW
ET	2×10^4	34^{+91}_{-21}	3×10^4

Ronchini+22

Gupta+24

The detection of the gamma-ray counterpart at high z can give strong constraints on the inclination angle, otherwise unavailable from the GW analysis alone

Inclination angle and distance are degenerate, so the localization in space through EM observations can break such degeneracy

The detection of the gamma-ray counterpart at high z can give strong constraints on the inclination angle, otherwise unavailable from the GW analysis alone

Inclination angle and distance are degenerate, so the localization in space through EM observations can break such degeneracy

Multi-messenger science in the 3G GW era

Cosmology with standard sirens

Hubble constant

Having a sample of joint detections GW-γ with available redshift

Dark energy EoS

Modified GW propagation

Branchesi+23

Origin of GW- γ time delays

Conclusions

Past achievements:

☆ Fundamental role for the epochal multi messenger observation of GW170817 and GRB170817A

Present efforts:

- \mathbf{X}
 - optimize the chance of detecting the next MM event
 - obtain the most stringent limits in the case of a non-detection

Future challenges:

 \sum

Fermi ensures a constant monitoring of the high-energy sky and the joint efforts with the LVK collaboration allow us to

Presence of (and coordination among) γ /X-ray detectors indispensable in 3G GW era to maximize the scientific return

Fermi and the origin of precursor in merger-driven GRBs

- PRECURSOR: short emission anterior and detached from the main emission episode, sometimes showing a softer spectrum
- Observed in ≈10% of short GRBs
- Open question:
 - just a fraction (and same origin) of the main prompt emission
 - Separate mechanism

Expected to be more isotropic than the usual prompt emission -> suitable for joint GW- γ detection Possible scenarios:

- Pre-merger emission from the disruption of the NS crust
- Magnetospheric interaction

Connection between accreted mass and luminosity

$\eta < 1, M_{acc} < 0.052 M_{\odot}$

