LHAASO Highlight Results on VHE γ-ray sources

Songzhan Chen on behalf of the LHAASO collaboration

IHEP,CAS

2024.9.9@11th International Fermi Symposium

中國科學院為能物昭和完備 Institute of High Energy Physics Chinese Academy of Sciences

Large High Altitude Air Shower Observatory

The partial arrays since 2019 The full arrays since July 2021

WCDAKM2AWFCTA+KM2A+WCDAVHE γ-ray detectorUHE γ-ray detectorCosmic ray detector0.1 TeV-20 TeV10 TeV-10 PeV10 TeV-100 PeV

LHAASO detectors

Status of LHAASO

LHAASO for γ **-ray astronomy**

5

The 1st LHAASO catalog

LHAASO coll. ApJS, 271:25 (2024)

LHAASO recent highlight results on Galactic sources

Cygnus Cocoon

Fermi-LAT firstly revealed a freshly accelerated cosmic rays source! Extension radius ~2°.

ARGO-YBJ: 0.2-10 TeV

HAWC: 1-100 TeV

LHAASO identify a super PeVatron

Large UHE γ-ray bubble with a radius of 6° (~150pc)

- Larger than the Cygnus Cocoon(2°)
- SED is connected with Fermi-LAT for core region
- Associated with Molecular Clouds
- 8 photons >1 PeV
- 10 PeV cosmic ray super PeVatron

LHAASO coll. Science Bulletin 69:449-457(2024)

SNR as cosmic ray sources

Fermi-LAT provide the first robust evidence for SNR accelerate CR! What is the maximum energy that SNR can accelerate?

Fermi-LAT coll. 2013

MAGIC coll. 2017

LHAASO reveal SNR approaching PeV

• SNR W51C: An interaction region between the cosmic rays and the dense molecular clouds.

Underline cutoff energy of proton up to

LHAASO coll. Science Bulletin, (2024, https://doi.org/10.1016/j.scib.2024.07.017)

$$E_{p,\text{cut}} = 385^{+65}_{-55} \text{ TeV}$$

Fermi-LAT

LHAASO

1013

1014

LHAASO reveal new phenomena from PWNs

LHAASO recent highlight results on extragalactic sources

LHAASO extragalactic sources

Name	Note	LHAASO Arrays	z	Туре	
GRB 221009A		WCDA+KM2A	0.151	GRB	
Mrk 421	1 st catalog	WCDA+KM2A	0.031	Blazar(H)	
Mrk 501	1 st catalog	WCDA+KM2A	0.034	Blazar(H)	
1ES 2344+514	1 st catalog	WCDA	0.044	Blazar(H)	
1ES 1727+502	1 st catalog	WCDA	0.055	Blazar(H)	
1ES 1959+650	Atel#16437	WCDA	0.048	Blazar(H)	
NGC 1275	flaring	WCDA	0.0176	FRI	
M87		WCDA	0.0044	FRI	
NGC 4278	1 st catalog: New	WCDA	0.002 (16.4Mpc)	Low luminosity AGN	
IC 310	Atel#16540	WCDA+KM2A	0.0189	AGN(unknown type)	

LHAASO observation on NGC 4278

First evidence for the Low-luminosity AGN with VHE γ-ray!

Observation on GRB221009A with

LHAASO

High energy γ-ray from GRB

GRB 090926A

Fermi-LAT coll. et al. 2011

The BOAT GRB 221009A

Detected by Fermi-LAT at 13:16:59.99 UT!

BOAT (Brightest of all time) !

Once every thousands years !

GRB 221009A @FOV of LHAASO

GRB 221009A is well observed by LHAASO at a favorite zenith angle!

19

WCDA light curve result

>60,000 photons TeV emission is afterglow! First time detect onset of the TeV afterglow! The most strict limit on the prompt TeV emission: $R = F_{TeV} / F_{MeV} < 2 \times 10^{-5}$

A large yy absorption optical depth ? OR A magnetized jet?

Precise Light Curve analysis

The LHAASO TeV light curve provides us with a unique opportunity to study the early afterglow physics!

Standard afterglow model fitting

Light curve fitting well in the afterglow model

LHAASO coll. Science, 380:1390 (2023)

Unexpected SED evolution

The SED become harder as time increasing. This is unexpected from afterglow model!

KM2A at higher energies

16

14

12

140 photons with energy >3TeV

Number of events /10s 10 2 0 600 T-T₀ (s) 200 400 800 1000 1200 1400 10⁻⁵ GRB221009A WCDA shape KM2A data Flux @4-20 TeV(ergs/cm²/s) 10^{-6} 10^{-7} 10⁻⁸ 10² 10³ 1 10 T-T₀-226 (s)

LHAASO coll. Science Advances,9: eadj2778 (2023)

16

14

12

Energy (TeV)

GRB221009A — N_{on}

Events

 N_{b}

WCDA+KM2A SED (observed)

SED function: log-parabola

SED function: Power-law+Ecut (favored)

LHAASO coll. Science Advances,9: eadj2778 (2023)

WCDA+KM2A SED (EBL corrected)

LHAASO coll. Science Advances,9: eadj2778 (2023)

The high energy photons

Bayes theorem used for energy estimation

E_{max}:

- 17.8TeV for LP SED model
- 12.2TeV for PLEC model
- 12.5TeV for LP+EBL model

$$P(E|(E_{rec},\theta)) = \frac{f(E)A_{eff}(E,\theta)P(E_{rec}|(E,\theta))}{\int f(E)A_{eff}(E,\theta)P(E_{rec}|(E,\theta))dE}$$
$$\xi = \int^{E_{\xi}} P(E|(E_{rec},\theta))dE$$

 J_0

	$T_{event}(s)$	E_{LP} (TeV)	E_{PLEC} (TeV)	E_{EBL} (TeV)	Ne	N_{μ}	$\theta \left(^{\circ} \right)$	$\Delta\psi$ (°)	$D_{edge}(m)$	P (%)
	236.6	$12.7^{+6.2}_{-3.8}$	$9.7^{+3.3}_{-2.1}$	$9.8^{+3.1}_{-2.3}$	60.6	0	28.5	0.46	77	7.0
	242.5	$10.5^{+5.0}_{-3.2}$	$8.3^{+3.0}_{-2.1}$	$8.4^{+3.2}_{-2.2}$	57.4	0	28.8	0.45	111	10
	262.4	$12.6^{+5.5}_{-3.8}$	$9.5_{-2.3}^{+3.4}$	$9.6^{+3.3}_{-2.4}$	57.3	0	28.6	0.53	180	5.7
	358.1	$10.0^{+4.8}_{-3.2}$	$7.4^{+3.1}_{-1.8}$	$7.9^{+3.3}_{-2.2}$	46.0	0	28.7	0.54	119	6.0
	571.1	$9.4^{+5.1}_{-3.0}$	$7.4^{+2.6}_{-2.5}$	$7.7^{+3.0}_{-2.5}$	45.7	0	29.5	0.52	99	7.8
	643.0	$17.8^{+7.4}_{-5.1}$	$12.2^{+3.5}_{-2.4}$	$12.5^{+3.2}_{-2.4}$	81.8	0.3	29.7	0.62	181	4.5
	812.4	$11.1^{+5.9}_{-4.3}$	$7.4^{+3.6}_{-2.8}$	$7.6^{+3.9}_{-3.0}$	68.0	0	30.3	0.66	112	11
	863.8	$12.9_{-3.9}^{+6.1}$	$9.2^{+3.0}_{-2.8}$	$9.7^{+3.2}_{-3.1}$	100.2	0.8	30.1	1.07	81	17
	894.1	$13.6^{+6.1}_{-4.2}$	$9.7^{+3.4}_{-2.5}$	$10.4^{+3.3}_{-3.0}$	60.5	0	31.8	0.83	214	16

Challenge to GRB afterglow model

More complicated processes during the early afterglow phase?

An additional hard spectral component emerges at the highest energy end?

LHAASO coll. Science Advances,9: eadj2778 (2023)

Constraints on related physics

Constraints on LIV using time lag

LHAASO coll. PRL 133, 071501(2024)

Summary

- LHAASO, fully operated since July 2021, open-up a new era with many new discoveries about Massive star, SNR, PWN, AGN, GRB and so on.
- There still much more new interesting phenomena ahead!
- LHAASO is also very lucky to overlap with the Fermi-LAT era, since GeV-TeV-PeV joint measurement are crucial for many physics.

Fermi-LAT 0.1GeV-300GeV (2008-now)

LHAASO 0.3TeV-10000TeV (2019-2021-now)

Outlook: LHAASO upgrade plan LACT

- LACT improve the angular resolution <0.05°</p>
- LACT + KM2A muon detectors
 - → Better gamma-ray selection
- **Construction: 2024.10 2028.9**

Outlook: Future plans

HUNT (High-energy Underwater Neutrino Telescope)

More LHAASO results can be found from: http://english.ihep.cas.cn/lhaaso/

Thank you!