

High-Mass Gamma-Ray Binary: J1405.1-6119

Alex Lange (GWU, UMBC, NASA GSFC), Robin Corbet (UMBC, NASA GSFC), Joel Coley (HU, NASA GSFC),

Guillaume Dubus (University of Grenoble Alpes), Nazma Islam (NASA GSFC, UMBC), Jeremy Hare (NASA GSFC, CUA, CRESST), Jonathan Barnes (HU)

We present the results of multi-wavelength observations of the High-Mass Gamma-Ray Binary 4FGL J1405.1-6119. XMM-Newton and NuSTAR observations taken in 2019 (sampling the gamma-ray maximum and minimum), constrain the emission of soft and hard X-rays, show variability of the hydrogen column density, n_H, and spectral index, Γ_X , and provide no evidence of short-term variability or pulsations. We also present the first orbital phase-resolved analysis of 15 years of Fermi--LAT data of 4FGL J1405.1-6119 and the evolution of the spectral shape as a function of orbital phase. Finally, the X-ray and Gamma-ray spectrum can be interpreted in the framework of the intra-binary shock model previously used within High-Mass Gamma-Ray binaries such as LS 5039.

Introduction

- High-mass Gamma-ray Binaries (HMGBs) are a rare class of binaries observed in our Galaxy (differing from other binaries by a characteristic peak in the SED above a few hundred MeV), comprised of a massive O/Be/WR type companion and a NS/BH compact object. Most of (\sim 11 HMGBs) are unclassified.
- High-energy emission models are either an intrabinary shock (pulsar wind interacting with companion wind) and microquasar (MQ) relativistic jet model.

Previous Research/Discovery of 4FGL J1405.1-6119

• J1405 was discovered using a power spectrum analysis of Fermi-LAT data from aperture weighted photometry, finding a significant period of 13.7 days [1]

Fermi-LAT Analysis

• Dynamic Lomb-Scargle Periodogram (LSP) with 750-day lightcurves (and a 100-day sliding window function) of the aperture photometry data shows the relative strength of the fundamental, 2nd and 3rd harmonics of the orbital period

Broadband Fitting

- We fit the broadband data with an IBS model, based off LS 5039 [5]
- Assuming the IBS is very close to the surface and the NS, and the associated magnetic field is \sim 3 G (due to no detected spectral breaks in X-ray modeling)
- Fit with inverse Compton and Synchrotron components from an Exponential Cutoff Broken power law (ECBPL; modeling the O type companion) and a Maxwellian Distribution (modeling the IBS)
- We find good agreement with these assumptions and only 5 fit parameters

- Folding the light curve on the orbital period resulted in a double-peaked structure
- Limited spectral analysis, frozen to 4FGL values, (the basis for a microquasar emission model by [2])

- Two XMM-Newton and NuSTAR Observations are taken at orbital phase 0 and 0.5 (defined by the gamma-ray max and min)
- We find that absorbed power law models are the best fit (tested broken power laws, gaussian emission and absorption features) and no spectral break. X-ray and gamma-ray emission are anti-correlated
- χ^2_{red} values for Phase 0 and 0.5 are 1.03 and 1.15 respectively
- No pulsations from 10^{-5} to 10^3 Hz found in XMM-PN or NuSTAR observations
- We find orbital variation in the n_H , and slight variation in the spectral index, Γ_X , suggesting a significant change in the binary's geometry

- χ^2_{red} values for Phase 0 and 0.5 are 1.28 and 1.16 respectively
- Low number of free parameters (5), which is more favorable than the MQ broadband fit from [2]

Summary

- We analyze 2 XMM-Newton and NuSTAR observations taken during the gamma-ray maximum and minimum (defined as phase 0 and phase 0.5) and model the X-ray spectra and search for pulsations
- We find a simple absorbed power law provides the best fit and find no evidence for any other features
- We find no evidence of pulsations within the XMM-PN or NuSTAR data in a wide range of frequencies
- We find evidence that the previously reported 2nd peak in the gamma-
- Fig. 4. Orbital phase-folded spectral fits from Fermi-LAT (200 MeV 500 GeV). Panel (a) corresponds to flux, while (b) and (c) correspond to spectral indices α and β .
- Phase 0 and 0.5 SEDs are extracted and compared from 200 MeV 500 GeV
- Similar SED spectral behavior, only difference is normalization

rays at phase 0.5 has diminished in significance, and is only apparent during certain periods

- We provide the first gamma-ray phase-resolved spectral fits of J1405
- We model the broadband (X-ray and gamma-ray) data with Inverse Compton and synchrotron components with an exponential cutoff broken powerlaw distribution for the companion's stellar wind and a Maxwellian Distribution for the intrabinary shock
- We find the intrabinary shock model is in good agreement with the data and a significant improvement to the microquasar model presented in [2] with significantly fewer free parameters

Citations:	
1] R. H. D. Corbet <i>et al</i> 2019 <i>ApJ</i> 884 93	
2] E. Saavedra <i>et al</i> 2023 A&A 680 A88	
3] S. Abdollahi <i>et al</i> 2022 ApJS 260 53	
4] M. Wood <i>et al</i> 2017 PoS ICRC2017 824	
5] G. Dubus <i>et al</i> 2015 A&A 581 , A27	