Geminga's pulsar halo: a multiwavelength view
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MARIE CURI

In short X-ray data: upper limits with XMM-Newton and NuSTAR Interpretation of multiwavelength spectral energy distribution

We present [1] a broadband investigation of the Geminga pulsar halo using novel X-ray analysis We analyse archival X-ray data in a broad energy range (XMM-Newton: + NuSTAR: 8-79 keV). Since Model for inverse Compton integrated in 30, 10, 1 degrees; synchrotron in 0.23 degrees (~FOV)

of archival data, existing v-ray observations and state-of-the-art phenomenological models, finding Geminga halo is expected to be extended as the FOV of both instruments, we developed innovative g

constraints to the magnetic field strength around Geminga. techniqgues carefully estimating the backgrounds 10 o XMM-Newton (this work)
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Figure 6. Interpretation of all available Geminga pulsar halo data, from gamma rays (Fermi-LAT, H.E.S.S., HAWC) to the
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Origin: energetic e® accelerated by the pulsar and

producing inverse Compton scattering emission

off the ambient radiation fields after escaping the ~ '8ure 1. Geminga synchrotron halo flux for 8-40 kev,
. . overlaid with the extension of TeV v rays (yellow), and typical
relic pulsar wind nebula
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e ao VO Source (3.4 koW = NUSTAR less constraining at few keV, but > 10 keV are crucial to constrain energy cutoff
If emission at ~GeV-TeV originate from high energy e*, synchrotron losses in ambient magnetic field 103 eoroune A0 ey = Angular profile upper limits: less constraining
produce diffuse synchrotron emission with similar spatial extension at X-ray energies, providing E, [eV]

. . . L. Figure 4. NuSTAR Background and source counts maps for Full parameter space investigation left to future work.
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Figure 3. X-ray spectrum in [0.5, 8] keV range in are marked with white circles. Detected sources (Src 1, Ps 1

Challenges: theoretical understanding of inferred properties in the vicinity of pulsars, crucial for inter- XMM-Newton data. The data (black) is overlaid with the

: . - - - : , _ , and 2, Geminga) are marked with cyan circles. Local stray Summar
pretmg cosmic-ray pOSltrOn excess and for Galactic cosmic ray propagahon expe.cted background components, including quiescent light background only present in the background observation y
particle background (QPB, purple), soft-proton flare (SPF, is marked with yellow dashed ellipse. VLA 74 MHz contour

Synchrotron halo: ~ ray-informed modelling éellcsz)Haﬂd ttjr!ffuse X-]iabv bickgrotéjﬂd (DXtB" gtreeﬂ)- gf;e Br€Y  of IC 443 is overlaid in green. XMM New data analysis optimized to search for extended objects exceeding field of view:;
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estimate upper limits. . .
NUSTAR Energies larger than 10 keV explored for the first time, demonstrating importance of stray-light
when analysing sources extending few degrees

Model Interpretation of all current broadband observation of Geminga halo, from X-ray to multi-TeV

Observed halo’s spectral and morphological properties suggest that e* diffusion is suppressed with re-
spect to what found to average describe Galactic cosmic ray propagation

We use a phenomenological model explaining Fermi-LAT, HAWC and H.E.S.S. data [4]: NuSTAR: X-ray halo model convolution

shows the flux profile normalised at 8 = 0, in arbitrary units. 6
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the 40-79 keV energy band 8-40 keV. The three circular regions used to extract the
count rates to compare with the background subtracted data
are also shown in green. The simulated exposure is 10° s, to
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+ Synchrotron and inverse Compton emission (spectrum, angular profile, 2D template): ) Outlook Methodology can be applied to other pulsar halos with archived data or future observations
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