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Enhancing the Compton Spectrometer & Imager’s 
event reconstruction capabilities with machine learning

Compton telescopes utilize a gamma-ray Compton scattering one or more times in their detector volume to reconstruct the photon’s path and determine 
its initial scatter angle.  For compact Compton telescopes this task is complicated by the fact that the time between successive interactions is shorter than 

the readout time of the detector. As a result, the correct path of the gamma-ray must be extracted from the raw data by determining the most likely 
scattering sequence. Here we consider the Compton Spectrometer and Imager (COSI) and the implications of using machine learning for COSI’s event 

reconstruction. We have tested four different approaches to Compton event reconstruction for COSI: the classical Compton sequence reconstruction, a 
naive Bayesian, a random forest, and a neural network. These approaches were implemented in the Medium-Energy Gamma-ray Astronomy library 

(MEGAlib) software toolkit, which is also where we simulated the data, trained the approaches, and evaluated the results. Our findings show that these new 
methods outperform the classical event reconstruction approach and result in the lowest rates for wrongly reconstructed event paths. 
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Figure 1. (a) Consider an incoming gamma-ray which Compton scatters twice within a detector volume and then gets absorbed. We can readout 
the position and energy information of each interaction, however the order of the interactions is not explicit in the raw data and must be 
extracted in the analysis pipeline. (b) Once the sequence of interactions is determined, the initial Compton scatter angle is determined and the 
gamma-rays origin is confined to an annulus (Compton cone) in the sky. Using overlapping Compton cones, the point of origin can be 
determined. (c) The key performance parameter of a Compton telescope is the Angular Resolution Measure (ARM). The ARM is defined by the 
shortest distance (in degrees) between the known photon’s origin and the Compton cone.
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Currently, we are working on generating sensitivity estimates for the full COSI SMEX geometry using these four different algorithms. For this 
calculation we have simulated 1x108 isotropic, monochromic, signal emission line events for the full SMEX geometry using cosima — 
MEGAlib’s particle simulation tool. Half of these simulation files are then passed into MEGAlib’s reaponsecreator which generated training 
files for the Bayesian, random forest boosted decision tree, and neural network algorithms. These training files are then applied to reconstuct 
the events for the full continuum COSI will be observing, including point sources and backgrounds. Na-22 and Al-26 were considered because 
of their prevalence to COSI’s science goals to image the 511 keV line and perform spectroscopy of radioactive decay lines. We are also 
working on benchmarking all the appoaches by considering how they fair for different parameter cuts on the data. 
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Figure 6. ARM plot demonstrating the performance of the 
four algorithms: classical, Bayesian, random forest, and 
neural network. Correctly reconstructed events appear in 
the central peak of the ARM distribution around 0º, and 
wrongly reconstructed events appear off-peak. For this 
plot, the algorithms were implement, trained, and 
evaluated in MEGAlib. 100,000,000 events were 
simulated using a Na-22 source in cosima and trained 
using the responsecreator. The trainings were then 
evaluated with ground-based Na-22 calibration data from 
the 2016 COSI balloon. The ARM plot shows clear 
improvement in performance for the machine learning 
approaches, with the neural network offering the most 
improvement.    

Figure 2. When a photon Compton scatters N times (N > 1), the second φk scattered angle can be determined both kinematically and 
geometrically. The classical approach pickes the sequence that minimizes this difference. While computationally fast, the classical approach 
only considers Compton scattering, excluding all other detector effects. 

Figure 3. The Bayesian approach utilizes Baye’s theorem to determine the probability of an original input given some obtained result. This 
approach works well for Compton event reconstruction because we can create an extensive set of simulation files for the Bayesian algorithm 
from which it can generate a probability graph to analyze all possible interaction sequences and determine the most likely reconstructed path. 
Unfortunately, the data space required to consider all relevant physical effects is too large to compute, causing important information to be left 
out of the calculations.

Figure 5. The neural network we used has a standard  topology of a multi-layer perceptron with a single hidden layer and 8 different blocks of 
input nodes. The input layers accept input data, the output layers define possible outcomes, and the hidden layer transforms the data to match 
the outcome desired by the output layers by assigning weights between the different nodes of each layer (neurons) . The neural network is 
trained using simulations. As the network processes more and more data, the weights between the neurons are adjusted to minimize the 
difference between the network’s results and the true results of the simulation. 
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Figure 4. A random forest is a type of decision tree algorithm. Inputs are represented by nodes in the tree, output values are given by leaves, and 
the paths connecting a node to a leaf are represented by weighted branches. These weights are determined using simulation data. 
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Figure 7. Overview of the COSI analysis pipeline.
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• Data space is too large to compute
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Shortcomings
•  To be quantified during 

bench marking process
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Quantify the impact machine learning 
has on COSI’s science capabilities 

Does it improve COSI’s sensitivity?

Benchmark and validate the approaches  
Apply different data cuts to the 

reconstructed events and see how machine 
learning compares to the classical approach: 

Does it have improved reconstruction for 
events with shorter distances between Compton scatters?

With smaller Compton scattering angles? 

Validate  with ground based calibrations
COSI balloon data

Single SMEX detector 

Identify other analyses within MEGAlib that 
could be improved with machine learning 

Such as strip pairing

In tandem, determine if there are other 
algorithms could enhance results

Correctly reconstructed

Wrongly reconstructed

Na-22 ARM for reconstructed events 

Method 
Classical
Bayesian 
Random Forest
Neural Network

RMS improvement  
0%
17.0%
24.9%
27.4%

If benefits are evident: integrate machine
learning event reconduction into MEGAlibs 
pipeline (Figure 7). 


