SIRI-2 Detection of the Gamma-ray Burst 221009A

Justin Finke¹, Lee Mitchell¹, Bernard Phlips¹, Neil Johnson², and Emily Kong²

¹US Naval Research Laboratory

²Technology Service Corporation

Distribution Statement A. Approved for public release. Distribution is unlimited.

Abstract: SIRI-2 is a collection of Strontium Iodide gamma-ray detectors sensitive at approximately 400 keV to 10 MeV, launched on the Department of Defense's STPSat-6 to geosynchronous orbit. SIRI-2 detected the gamma-ray burst (GRB) 221009A and, unlike most GRB detectors, was not saturated and did not require any pulse pile-up corrections. We present observations of this GRB by SIRI-2, including spectral fits and comparison with other detectors.

I. GRB 221009A

The Gamma-ray Burst 221009A was the brightest of all time (BOAT; Burns et al. 2023). It was detected by almost every astrophysical gamma-ray detector that existed at the time of its explosion. The burst was so bright that most gamma-ray detectors were saturated. One exception was the Strontium lodide Radiation Instrument II (SIRI-2; Mitchell et al. 2022).

IV. Spectral fits

Table 1. Result of Band Function fits

Time since GBM trigger [s]	lpha	eta	$E_{\rm pk} \; [\rm keV]$	20 keV - 10 MeV flux [erg cm ^{-2} s ^{-1}]
211 - 221	-1.1 *	-2.08 ± 0.02	< 860	$(1.6 \pm 0.6) \times 10^{-5}$
221 - 231	-1.28 ± 0.03	-2.06 ± 0.01	831 ± 46	$(7.2 \pm 0.2) \times 10^{-3}$
231 - 241	-0.91 ± 0.03	-2.47 ± 0.01	788 ± 22	$(4.9 \pm 0.1) \times 10^{-3}$
241 - 251	-1.1 *	-2.69 ± 0.01	< 724	$(4.60 \pm 0.07) \times 10^{-5}$
251 - 261	-1.1^{*}	-2.35 ± 0.01	< 763	$(7.3 \pm 0.1) \times 10^{-4}$
261 - 271	-0.90 ± 0.014	-2.45 ± 0.02	746 ± 29	$(1.36 \pm 0.04) \times 10^{-4}$
271 - 281	-1.1^{*}	-2.30 ± 0.01	< 775	$(1.43 \pm 0.03) \times 10^{-5}$
281 - 291	-1.04 ± 0.06	-2.00 ± 0.10	1951 ± 160	$(1.64 \pm 0.05) \times 10^{-6}$

II. SIRI-2 Instrument

Two SIRI instruments have been launched as part of the Department of Defense Space Test Program (STP). The original instrument was launched in 2017. SIRI-2 was launched in 2021 to geosynchronous (GEO) orbit onboard STPSat-6. SIRI-2 consists of 7 hexagonal shaped Srl₂:Eu detectors with a frontal area of 66 cm², and an anticoincidence detector. The Srl₂ scintillator has greater energy resolution than most roomtemperature detectors (4% at 662 keV) and does not have cryogen requirements like, e.g., Germanium used by COSI (Tomsick et al. 2023). It is sensitive in the energy range 400-7000 keV. *Left*: Exploded view showing major components of the SIRI-2 Instrument. *Below*: Mass model for STPSat-6 and SIRI-2, along with simulated direction of GRB 221009A and the Earth.

*Fixed in fit.

We fit the spectrum of GRB 221009A with a Band function (Band et al. 1993). SIRI-2 was designed to qualify

----rily for science operations. Consequently there are

III. SIRI-2 Light Curve of 221009A

Below: Light curve of 221009A with SIRI-2. The rapidly varying background at GEO is shown. Several peaks of the GRB are shown in the inset.

Distribution Statement A. Approved for public release. Distribution is unlimited.