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THEORETICAL CARTOON: GJ MODEL
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THEORETICAL (AND NUMERICAL) APPROACHES

Magnetohydrodynamics

Kinetics

Magnetized plasma without inertia

v OK in highly magnetized regions

- breaks when the existence of plasma is not a given, and in
reconnection
typical apps: neutron star magnetospheres, jets

Plasma as an ideal collisional fluid

v e.g., no thermal conduction, pressure is same in all
directions; OK as a first approximation for global dynamics

- does not describe non-thermal particles

* typical apps: accretion flows

First-principles description for collisionless plasmas

V' includes non-ideal effects (e.g., pressure is different along
and across magnetic field, heat flux), describes particle
acceleration

- computationally expensive and usually allows limited

dynamic range

: lasma instabilities, magnetospheres
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PLASMA PHYSICS ON A COMPUTER: (GR)(R)PIC

P, ]

Q Solving Maxwell’s equations on the
grid

\_

(GR) = general relativistic
(R) = radiation reaction force, photon emission, multiple pair production mechanisms
PIC = particle-in-cell




THREE-DIMENSIONAL MAGNETOSPHERES . . along j
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LOCAL SIMULATION OF PAIR DISCHARGE
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Gamma-ray modeling

Simulations prefer current sheet as a
particle accelerator. Particles radiate
synchrotron emission.

Observe caustic emission.

Predict gamma-ray efficiencies 1-20%
depending on the inclination angle and
pair production efficiency in the sheet.
Higher inclinations are less dissipative.

Cerutti, Philippov, Spitkovsky (2016); Philippov, Spitkovsky (2018)




LIGHTCURVES

FERMI

>0.1 GeV H=175202 J0633+1746,
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Double-peaked lightcurves
are generic
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Philippov, Spitkovsky, 2018
(ApJ)
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RECONNECTION IN PULSAR MAGNETOSPHERES

* B ~10°G, 0 =B?/(4np,c?) > 1

* Reconnection electric field accelerates particles,
synchrotron cooling is important on the same

timescale, gives “burnoff”” limit Ygyy

* Pairs accelerate beyond the radiation reaction
limit, upto y ~ fewXa

* Highest energy photons are beamed along the
upstream magnetic field, consistent with the
beaming of GeV lightcurves

hvpax = 16MeV - (a/ysyn)

Chernoglazov, Hakobyan, Philippov, 2023 (ApJ)
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RECONNECTION IN PULSAR MAGNETOSPHERES

* B ~10°G, 0 =B?/(4npy,c?) > 1 pairs

. . . i (b) st li
* Reconnection electric field accelerates particles, ; (b) strong cooling

synchrotron cooling is important on the same
timescale, gives “burnoff”” limit Ygyy

* Pairs accelerate beyond the radiation reaction
limit, upto y ~ fewXa
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* Highest energy photons are beamed along the
upstream magnetic field, consistent with the
beaming of GeV lightcurves

hvpax = 16MeV - (a/ysyn)

—

)
w

ul
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RECONNECTION IN PULSAR MAGNETOSPHERES
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NEW FRONTIER: MULTI-TEV FROM VELA PULSAR [IN PREP]

The H.E.S.S. Collaboration, Nature (2023)
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Prediction: CTA will see moderately energetic y-ray pulsars as
multi-TeV sources
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screening

propagation ysyn ~ 105 >0 = feWX107

I

€ph = 16MeV - (a/ysyn)

* Pair density is low because "return”-
current discharge sends most of the
plasma into the star

d *° Most of the plasma is produced in the
| current sheet

Prediction: CTA will see moderately energetic y-ray pulsars as
multi-TeV sources
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Phase-resolved spectra can probe anisotropy of the particle DF




IDEA TO BE TESTED WITH LONG-TERM FERMI DATA

Evidence for the chanaing maanetic geometry in Crab
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Potential key for magnetic field evolution in young pulsars Lyne, Graham-Smith et al., 2013 (Science)




Conclusions and outlook

1. Origin of pulsar emission has been a puzzle since 1967 - kinetic plasma simulations
are finally addressing this from first principles.

2. Current sheet is an effective particle accelerator. Particles in the sheet emit
powerful gamma-ray mainly via synchrotron mechanism. Highest energy TeV
photons can be produced in the current sheet as well.

3. Phase-resolved spectra and long-term variability can be very interesting.




