Polarimetry of the Vela pulsar with the *Fermi*-LAT: A sensitivity estimate

Adrien Laviron, Denis Bernard, Philippe Bruel, Laboratoire Leprince-Ringuet, Palaiseau, France

on behalf of the Fermi-LAT collaboration

11th Fermi Symposium September 12th, 2024

Gamma-ray pulsars with the Fermi-LAT

From: Harding 2021

- Detected >300 pulsars [Smith et al. 2023, 3PC catalog]
 - since 2008
 - in the 20 MeV 300 GeV energy range
- Pulsed gamma-ray emission (outer magnetosphere)
- Gamma-ray polarimetry is an independent probe of
 - emission processes
 - emission region

Pulsar polarization model

From: Harding & Kalapotharakos, 2017

Pair-production polarimetry: the general principle

- Precise measurement of the e⁺ and e⁻ direction needed to perform polarimetry
- Theoretical modulation amplitude A≈0.2 for a 100 % polarized source

Polarimetry limiting factor: Multiple scattering

- Scattering of the e⁺-e⁻ pair as it propagates through matter
 - The LAT was not designed with polarimetry in mind.
- Previous polarimetry attempt by Giomi et al., 2017 using Pass 8 data was inconclusive.
 - Need to revert to raw LAT data
- Fermi-LAT simulation software Gleam modified with G4BetheHeitler5DModel polarized gamma conversion model

Event selection dedicated to polarimetry

- Monte-Carlo point of first gamma-ray interaction, for transient events (evclass=16), XZ plane
- Remove events for which the Pass 8 track
 - conversion point is too close (< 12mm) to the tower edges
 - come from or go towards non-sensitive parts of the tracker
 - events which triggered the first silicon plane of the topmost layer
- 61 % of events are selected at 100 MeV.

An event reconstruction dedicated to polarimetry

Analysis with only the first two layers

- Limits multiple scattering
- (a) Conversion layer
 - Gives the conversion point
 - Multiple scattering much larger in tungsten
- (b) Gives the azimuthal information
 - Only if the electron and positron are separated enough
 - Different event morphologies

An event reconstruction dedicated to polarimetry

- Conversions in silicon
 - Less multiple scattering
 - May only trigger the lower silicon detector => "Lower" events
- Conversions in the tungsten
 - Trigger both silicon detectors => "Upper" events

Morphology 01 (High energy)

Morphology 02 Pass 8 track used to remove the ambiguity Morphology 14 Extra clusters not used Morphology 22 (1% of events) Azimuthal information 9 in conversion layer **(a)**

100 MeV simulated polarization signal

- Monte-Carlo simulations of a high-flux, mono-energetic, 100 MeV source located at Vela's pulsar's coordinates (using 15 years of *Fermi*-LAT attitude)
 - Not polarized (left, black)
 - 100 % polarized (left, red)
- The division (right) shows the polarization signal: ~1 % modulation (instead of 20%, because of multiple scattering)

Modulations

- Higher for "Lower" events (~ 2%) than for "Upper" events (~ 1%)
- Morphologies 01 and 11 peak at ~400 MeV
- Morphologies 02, 12, 22 peak at ~ 50 MeV.

Optimal weighting scheme

- Event category means
 - Energy bin
 - "Upper" or "Lower"
 - Event morphology
- Weight each category k with its modulation A_k
 - Figure of merit of a category k is $N_k A_{k^2}$
 - Represents the statistical weight of the category
- Uncertainty on polarization fraction is $\sigma_P = \sqrt{\frac{2}{\sum N_k A_k^2}}$

$$k \in \{Categories\}$$

Sensitivity estimate for the Vela pulsar

- Calculated using a fitted Vela pulsar spectrum (Transient020, 30 MeV 1600 MeV)
- The "Upper" events dominate the measurement because much more numerous.
- Background-free uncertainty on the polarization fraction is $\sigma_P \approx 13\%$

Sensitivity estimate for the Vela pulsar with galactic background

• Uncertainty on polarization fraction (with unpolarized galactic diffuse background)

$$\sigma_{P} = \sqrt{\frac{2}{\sum_{k \in \{Categories\}} N_{k} A_{k}^{2}}} \sqrt{\frac{S+B}{S}}$$

- S: source counts, B: background counts (no polarimetry selection)

$$- S \times \varepsilon = \sum_{k \in \{Categories\}} N_k$$

where ε is the polarimetry selection efficiency

- Estimate S and B in each energy bin from the fitted ROI
 - Events within the 95 % containment angle of the PSF
- We obtain a preliminary uncertainty on the Vela polarization fraction $\sigma_P \approx 19\%$

Conclusions and future prospects

- Conclusions:
 - Fermi-LAT is sensitive to the polarization of the Vela pulsar
 - Preliminary sensitivity estimate $\sigma_P \approx 19\%$
 - Results in good agreement with the toy-model study [Bernard 2022].
- Next steps:
 - Data / Simulation comparison (work in progress)
 - Perform the measurement

Backup

The Fermi-LAT

7

Preliminary performance of the Back section

