

A Systematic Study of Galactic Star-Forming Regions

Ava Webber

On Behalf of the LAT Collaboration: Marco Ajello^I, Anuvab Banerjee^I, Luigi Tibaldo^{II}, Alberto Dominguez^{III}, Marianne Lemoine^{IV}, Lob Saha^V

^IClemson University ^{II}Institut de Recherche en Astrophysique et Planétologie ^{III}Universidad Complutense De Madrid ^{IV}Harvard-Smithsonian Center for Astrophysics ^VCentre D'Etudes Nucléaires De Bordeaux Gradignan

Star-Forming Regions

WHAT? These are Galactic objects, and we are interested in massive star clusters

WHERE? In molecular clouds; opaque clumps of cold (~10K) and dense (~100-1000 particles/cc) gas and dust

WHEN? cloud mass > Jean's mass

Research Motivation

Galactic star-forming regions (SFRs) are potential CR accelerators and sources of γ-ray emission

★ SFRs may play an important role in the diffuse galactic emission and CR acceleration in the Galaxy

★ Only a few instances where associations with SFRs have been realized, while many more SFRs have not been detected

SFRs as CR Accelerators

- Host known cosmic ray (CR) accelerators (pulsars & SNRs)
- Collective stellar winds
 - Expected CR accelerators are young massive clusters (OB stars greatly contribute to collective winds)
 - High velocity winds interacting with ISM give rise to shocks and superbubble (SB) formation
 - Diffusive shock acceleration (DSA) effectively accelerates particles to CR energies

SFRs as **y-ray** Emitters

Cygnus Cocoon spatial width ~ 3.6°

X. Astiasarain et al. 2022

spatial width ~ 0.24°

E. Mestre et al. 2021

Westerlund 1 spatial width ~ 2.0°

F. Aharonian et al. 2022

NGC 3603 spatial width ~ 0.16°

L. Saha et al. 2020

SFRs Sample Selection

- Majority from Cantat-Gaudin+2020 analysis of Gaia data
- Manageable sample: keep only optically bright (dereddened mG < 5.5) clusters
 - Diverse sampling of intrinsic properties (age, distances, stellar membership)
 - Majority of stellar clusters with OB stars
 - All previously known γ -ray detections of SFRs
- Added to sample: Fermi γ-ray sources (e.g. Cyg-OB2, Westerlund 1, Westerlund 2, NGC 3603)

Fermi Data & Analysis

- ~15 years of data, 1 GeV 1 TeV range, ROI 10x10 deg.
- Binned joint likelihood analysis
- Preprocessing steps
 - All targets modeled as point sources
 - Only one detection for SFRs
- Extension fitting with Fermipy
 - Perform likelihood scan in spatial extension
 - Fermipy's gta.extension() with free parameters for BG sources
 - 19 *new* targets detected showing significant (S ≥ 4σ) extension

Extension Fitting

γ -ray Luminosity Dependence on Index

γ -ray Luminosity Dependence on Age

Robustness Tests of Analysis

Increase DOF in background model

• Multiple component modeling of Galactic diffuse emission

Control fields

- Spots within galactic plane distributed similarly to SFR sample
- Exclude regions spatially coincident with known γ-ray emitters (Fermi point and extended sources)
- Exclude other star clusters from <u>Cantat-Gaudin</u> analysis

Extension Fitting

- Refining our fits "recipe" for all 139 targets
- Ensure detections of extended sources are robust against changes of BG source parameters

Main Takeaways

- Have Identified ~19 significant candidates for newly detected γ-ray emitting SFRs
- γ-ray luminosity and detection rate as a function of age is consistent with expectation: younger clusters brighter and easier to detect!
- ★ Future work: multiwavelength studies of individual sources will be used to determine emission mechanisms, revealing the relation between physical features of Galactic SFRs and their emissions

Space Telescope

THANK YOU

Acknowledgements:

- Marco Ajello
- Anuvab Banerjee
- Alex McDaniel
- Luigi Tibaldo
- Jordan Eagle
- Alberto Dominguez
- Lob Saha
- Marianne Lemoine
- Dr. Ajello's Clemson
 University HEA group

Image Credits:

Velazquez, Pablo & Rodríguez-González, Ary & Esquivel, Alejandro & Rosado, Margarita & reyes-iturbide, Jorge. (2013). Modeling the thermal diffuse soft and hard x-ray emission in M17. The Astrophysical Journal. 767. 69. 10.1088/0004-637X/767/1/69.

Cygnus X (NASA/JPL-Caltech/Harvard-Smithsonian CfA) Westerlund 1 (NASA/ESA/Hubble) Westerlund 2 (NASA/ESA/Hubble) NGC 3603 (NASA/ESA/Hubble)

The Fermi-LAT Collaboration. (2019). Galactic Interstellar Emission Model for the 4FGL Catalog Analysis.

Extra Slides

Fermi-LAT Data

- Joint-Likelihood Analysis using PSF 1,2,3
- ~15 years of data
- P8R3
- 1 GeV 1 TeV
- z < 105
- 10 x 10 ROI (modeled as PS)
- 8 energy bins per decade
- Pix = 0.08 deg
- Point Source catalog: 4FGL-DR3
- Additional sources found with find_sources()