

Comptonized Relativistic Winds in Magnetar Giant Flares

Matthew G. Baring *Rice University baring@rice.edu*

(with H. Thi Dinh, Z. Wadiasingh)

Fermi Symposium, College Park, MD, 10th September, 2024

Extragalactic Magnetar Giant Flare (MGF)

 $P=5.2$ sec

TIME, s.

SGR 1900+14 MGF: source Kevin Hurley

GRB 200415A: *Fermi***-GBM and** *Swift***-BAT**

25

20

15

 (a)

 $(4) \rightarrow$

Fermi-GBM (BGO)

0.2-40 MeV

 (3)

 (1)

 (2)

Localized to NGC 253 (Sculptor)

Total energy emitted: 1046 erg. Total luminosity emitted: 10^{47} erg s⁻¹. No modulated tail.

Delayed GeV-band "nebular" emission detected by *Fermi*-LAT.

Further Details: O.J. Roberts et al., Nature (2021[\): http://doi.org/10.1038/s41586-020-03077-8](http://doi.org/10.1038/s41586-020-03077-8)

GRB 200415A: *Fermi***-GBM and** *Swift***-BAT**

GRB 180128A: another Sculptor MGF

- *Left*: light curves for GRBs 180128A and 200415A from NGC 253, and an NS-NS merger short GRB from a $z=0.134$ galaxy.
- *Right*: COMPT spectral evolution of GRB 180128A.
- Trigg et al., A&A, 687, A173 (2024). *See also Trigg talk for GRB 231115A in M82.*

Magnetar Giant Flare Geometry

Giant Flare Model

- Pair wind is treated in coasting phase (fixed Γ) only no dynamics yet.
- Field line is strongly-twisted, split-monopole morphology $(B \alpha r^2)$ near the pole; dipolar flared field lines generate similar results.
- Adiabatic cooling of pairs is treated in conical geometry with radial field lines. Then $\rho_e \alpha A^{-1} \alpha B \alpha r^2$.
- Non-relativistic EOS for pairs is assumed after onset of cooling, so cooling scales as $T_{\text{eff}} \alpha P \alpha \rho_{e}^{5/3} \alpha r^{10/3}$ with radius.

– kT_{eff,s} near stellar surface is set to match peak $E_p \sim 1 \text{ MeV}$.

- Radiation spectrum is COMPT model E^{β} exp(-E/kT_{eff}) in plasma frame, with index $\beta \sim 0$ fixed throughout the wind sheath.
- Radiation anisotropy is from a scattering transport MC simulation.
- Spectrum and angular profile are Doppler boosted to all sky directions.

Scattering Transport in Wind

- *Left*: slab geometry for magnetic Thomson scattering transport in local atmospheres or wind zones for neutron stars. The Monte Carlo simulation is *MAGTHOMSCATT*.
- *Right*: magnetic Thomson scattering cross section with its prominent cyclotron resonance. The cross section of the O-mode (||) is strongly suppressed below the cyclotron frequency $\omega_B = eB/m_e c$ for photons beamed almost along **B**; same is true for the X-mode (\perp).

Anisotropy in Wind Sheath

• Intensity distributions from *MAGTHOMSCATT* as a function of the angle θ_n normal to the wind's external surface (sheath). Dinh et al. (in prep.)

Intensity Light Curves

- Rotational phase profiles spanning a period P for a conical MGF wind of small (left, $\theta_w = 1.1^{\circ}$) and moderate (right, $\theta_w = 5.7^{\circ}$) solid angle. Larger solid angles enhance probability of MGF detection.
- θ_w is the wind cone's half-angle. Dashed vertical lines mark roughly the effective duration (T_{90}) of the MGF initial "spike," which anti-correlates with the wind's bulk Lorentz factor Γ .

Magnetar Period Estimates

	Magnetar $T_{90} =$	GRB 180128A GRB 200415A 15 msec	10 msec
	Γ	P (sec)	P (sec)
$\theta_{\rm w}=1.1^{\circ}$	6	0.5	0.3
$\theta_{\rm w}=1.1^{\circ}$	15	0.9	0.6
$\theta_{\rm w}=1.1^{\circ}$	45	2.6	1.7
$\theta_{\rm w}=5.7^{\circ}$	6	0.3	0.2
$\theta_{\rm w} = 5.7^{\circ}$	15	0.4	0.3
$\theta_{\rm w}=5.7^{\circ}$	45	0.5	0.4

Table 1: Estimated periods for Sculptor GF Magnetars

- For these two wind opening half-angles, the rough P values are nearly all somewhat shorter than known magnetar periods. Structured winds complicate.
- For Γ =100, the deduced periods are around a factor of 2 higher than for Γ =45.

MGF Spectral Evolution

- Coasting outflow $(\Gamma = 15)$ with adiabatically cooled COMPT spectrum. Surface emissivity modeled with output from radiative transfer code (see poster by Wadiasingh et al. for magnetar normal bursts). No wind dynamics included yet. Strong-twist field geometry is assumed. Model rotation period is P=0.6 second.
- Temporal asymmetry of 200415A spectroscopy suggests that data encapsulates onset of coasting and acceleration phase and/or injection abatement.

Conclusions

- The rapid rise and spectral hardening is well described by Doppler boosting/beaming elements. Details such as magnetic field morphology and pair EOS are secondary/minor influences.
- Inferred rotational period is short, unless $\Gamma = 100$.
- Asymmetry of the observed spectral evolution indicates either
	- i) the wind is strongly asymmetric in its $\Gamma(\theta)$ profile (why?);
	- ii) the engine is abating as the wind cone sweeps across our LOS (more likely).
- *To do*:
- Next task is to introduce wind dynamics to determine the $\Gamma(r)$ profile and assess if acceleration phase modifies spectral evolution from the pure coasting case.
	- Radiation pressure tensor has already been delivered in an RTE analysis in high *B*.
	- With dynamics in, we can assess inferences of energy injection abatement.
	- Can also better explore luminosity-peak energy correlation (Trigg talk).
- Eventually hope to replace magnetic Thomson physics by full QED Compton cross section (Gonthier lead).

Appendix of Slides

Spectral-Flux Correlations

- Spectral peak energy couples to instantaneous Doppler factor via $E_p \alpha \delta$.
- Flux *F* is integrated over largish areas and so couples as $F \alpha \delta^2$.
- Combined, the temporal-spectral variability is described by $F \alpha$ (E_p)².

Magnetar Giant Flares are rare

Crust Ruptures è **Photon Torpedo**

