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Extragalactic Magnetar Giant Flare (MGF) 

We see the initial “spike”

We don’t see the oscillating tail     

SGR 1900+14 MGF: source Kevin Hurley

P=5.2sec                 



Total energy emitted: 1046 erg.
Total luminosity emitted: 1047 erg s-1.
No modulated tail.
Delayed GeV-band “nebular” emission 
detected by Fermi-LAT.

GRB 200415A: Fermi-GBM and Swift-BAT

200 µs
12 µs

Further Details: O.J. Roberts et al., Nature (2021): http://doi.org/10.1038/s41586-020-03077-8

Localized to NGC 253 (Sculptor)

http://doi.org/10.1038/s41586-020-03077-8


GRB 200415A: Fermi-GBM and Swift-BAT

Non-thermal, Comptonized spectrum 
throughout evolution of the initial spike.

200 µs
12 µs

O.J. Roberts et al., (2021) Nature: http://doi.org/10.1038/s41586-020-03077-8

Maximum prompt photon energy 
Is 3 MeV => G > 6 for 
transparency to gg->e+e-.

http://doi.org/10.1038/s41586-020-03077-8


GRB 180128A: another Sculptor MGF

• Left: light curves for GRBs 180128A and 200415A from NGC 253, and an NS-
NS merger short GRB from a z=0.134 galaxy.

• Right: COMPT spectral evolution of GRB 180128A.
• Trigg et al., A&A, 687, A173 (2024).  See also Trigg talk for GRB 231115A in M82.

GRB 180128A



Magnetar Giant Flare Geometry

Launch phase

Coasting
phase



Giant Flare Model

• Pair wind is treated in coasting phase (fixed G) only – no dynamics yet.  
• Field line is strongly-twisted, split-monopole morphology (B a r-2) near 

the pole; dipolar flared field lines generate similar results.
• Adiabatic cooling of pairs is treated in conical geometry with radial

field lines.  Then re a A-1 a B a r-2 .
• Non-relativistic EOS for pairs is assumed after onset of cooling, so 

cooling scales as Teff a P a re
5/3 a r-10/3 with radius.  

– kTeff,s near stellar surface is set to match peak Ep~1 MeV.
• Radiation spectrum is COMPT model Eb exp(-E/kTeff) in plasma 

frame, with index b ~0 fixed throughout the wind sheath.
• Radiation anisotropy is from a scattering transport MC simulation.
• Spectrum and angular profile are Doppler boosted to all sky directions.



Scattering Transport in Wind

• Left: slab geometry for magnetic Thomson scattering transport in local atmospheres or 
wind zones for neutron stars.  The Monte Carlo simulation is MAGTHOMSCATT.

• Right: magnetic Thomson scattering cross section with its prominent cyclotron resonance. 
The cross section of the O-mode (||) is strongly suppressed below the cyclotron frequency 
ωB= eB/mec for photons beamed almost along B ; same is true for the X-mode (^).

From: Barchas, Hu & Baring, 
MNRAS 500, 5369 (2021). Cyclotron frequency
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Anisotropy in Wind Sheath
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• Intensity distributions from MAGTHOMSCATT as a function of the angle 
qn normal to the wind’s external surface (sheath).  Dinh et al. (in prep.)

In plasma 
rest frame



Intensity Light Curves

• Rotational phase profiles spanning a period P for a conical MGF wind of small 
(left, qw=1.1o) and moderate (right, qw= 5.7o) solid angle. Larger solid angles 
enhance probability of MGF detection.  

• qw is the wind cone’s half-angle.  Dashed vertical lines mark roughly the
effective duration (T90) of the MGF initial “spike,” which anti-correlates with 
the wind’s bulk Lorentz factor G.

Conical wind profile

-7.0

-5.0

-3.0

-1.0

1.0

3.0

5.0

Lo
g 1

0 I
nt

en
sit

y

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Phase Ωt

Γ = 6

Γ = 15
Γ = 45

θw=0.02 (=1.1
o
) α=75

o
=ζ

-7.0

-5.0

-3.0

-1.0

1.0

3.0

5.0

Lo
g 1

0 I
nt

en
sit

y
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Phase Ωt

Γ = 6

Γ = 15 Γ = 45

θw=0.1 (=5.7
o
) α=75

o
=ζ



Magnetar Period Estimates

• For these two wind opening half-angles, the rough P values are nearly all
somewhat shorter than known magnetar periods.  Structured winds complicate.

• For G=100, the deduced periods are around a factor of 2 higher than for G=45.



MGF Spectral Evolution

• Coasting outflow (G=15) with adiabatically cooled COMPT spectrum.  Surface emissivity 
modeled with output from radiative transfer code (see poster by Wadiasingh et al. for 
magnetar normal bursts). No wind dynamics included yet.  Strong-twist field geometry is 
assumed. Model rotation period is P=0.6 second.

• Temporal asymmetry of 200415A spectroscopy suggests that data encapsulates onset of 
coasting and acceleration phase and/or injection abatement.
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Conclusions

• The rapid rise and spectral hardening is well described by Doppler 
boosting/beaming elements.  Details such as magnetic field morphology and 
pair EOS are secondary/minor influences.

• Inferred rotational period is short, unless G = 100.
• Asymmetry of the observed spectral evolution indicates either

– i) the wind is strongly asymmetric in its G(q) profile (why?);
– ii) the engine is abating as the wind cone sweeps across our LOS (more likely).

• To do:
• Next task is to introduce wind dynamics to determine the G(r) profile and assess 

if acceleration phase modifies spectral evolution from the pure coasting case.
– Radiation pressure tensor has already been delivered in an RTE analysis in high B.
– With dynamics in, we can assess inferences of energy injection abatement.
– Can also better explore luminosity-peak energy correlation (Trigg talk).

• Eventually hope to replace magnetic Thomson physics by full QED Compton 
cross section (Gonthier lead). 



Appendix of Slides



Spectral-Flux Correlations

• Spectral peak energy couples to instantaneous Doppler factor via Ep a d.
• Flux F is integrated over largish areas and so couples as F a d2.
• Combined, the temporal-spectral variability is described by F a (Ep)2 .

Roberts et al. Nature 589, 207 (2021).



Magnetar Giant Flares are rare



Crust Ruptures è Photon Torpedo

Credit: NASA


