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Introduction 
• Interacting neutron star magnetospheres can 

release large amount of energy through 
electromagnetic emissions. 
Piro 2012, Tsang et al. 2012 , Pelenzuela et al. 2013, Lyutikov 2019, 
Sridhar et al. 2021, Most & Philippov 2020,2022 , Cooper et al 2023 

• Precursor signal  to neutron star mergers.

• Echoes contributing to the GRB afterglows.

• Our goal is to explore the parameter space 
regarding the emission patterns. 

For a review see Suvorov et al. 2024



1 TeV

Assuming emissions due to CR at the radiation 
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See Kalapotharakos et al. 2014, 2017, 2022

and Konstantinos Poster about the Fundamental Plane

Likely detectable with CTA with warnings from 3G GW detectors (~2030s)
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Introduction 
• Interacting neutron star magnetospheres can 

release large amount of energy through 
electromagnetic emissions. 
Piro 2012, Tsang et al. 2012 , Pelenzuela et al. 2013, Lyutikov 2019, 
Sridhar et al. 2021, Most & Philippov 2020,2022 , Cooper et al 2023 

• Precursor signal  to neutron star mergers.

• Creating echoes contributing to the GRB 
afterglows.

• Our goal is to explore the parameter space 
regarding the emission patterns. 

For a review see Suvorov et al. 2024



Exploration parameters

• Inclination angle of the 1st star 
    𝑎!:  0°, 45°, 90°

•  Inclination angle of the 2nd star  
    𝑎": 0°, 45°, 90°

• Ratio of their magnetic moments  

  𝑏!/𝑏" : −10", −10,−10
0
1, -1, 1, 10

0
1, 10,	10"

• Spin phase difference* 
	 	 	 Δ𝜙: 0°, 45°, 90°

 
*Only for some 𝑏!/𝑏" ratio  
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• In the limit of irrotational stars: 𝜔! = 𝜔" = 0.

• Dipole magnetic moments.

• Two neutron stars  with 𝑅∗ = 12𝑘𝑚 and	𝑀∗ = 1.4	𝑀⊙

•  
Medvedev & Loeb 2013, Peters 1964
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	with 𝑡H	the time to the merger.  

𝑟
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Our approach
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Our approach
• Ignoring tidal distortions and crust cracking.

• Numerical 3D force-free MHD simulation of global magnetosphere. 
       Kalapotharakos et al. (2012)

• Grid size: ~ 500x500x500.

• Initial separation  𝑑 = 3.3𝑅∗.

• Simulations last for 7.7 ms (4 rotations) until neutron stars touch. 



Example Run for ~50 Rotations



Single Isolated Pulsar
Energy Flux:

𝐿 ∝ 𝜇-𝜔./𝑐/

𝑺 =
𝑐
4𝜋 𝑬×𝑩,𝐿 = ∫ 𝑺 ⋅ 𝑑𝑨,	 where 

For dipole magnetic moment:

the Poynting vector.
the directional energy flux per time and area unit



Single Isolated Pulsar

…only 𝜃 matters!



144 cases explored



Both 𝜃 and 𝜙 matters



Aligned  
𝜶𝟏 = 𝟎°, 𝒂𝟐 = 𝟎°,	𝒃𝟐= 𝒃𝟏	

Anti-Aligned  
𝜶𝟏 = 𝟎°, 𝒂𝟐 = 𝟎°,	𝒃𝟐= −𝒃𝟏	



Aligned vs Anti-Aligned

Consistent with Most & Philippov 2020,2022 and Pelenzuella et al. 2013 
    



Inclination angles

𝜶𝟏 = 𝟎°, 𝒂𝟐 = 𝟒𝟓°,	𝒃𝟐= 𝒃𝟏	 𝜶𝟏 = 𝟎°, 𝒂𝟐 = 𝟒𝟓°,	𝒃𝟐= −𝒃𝟏	



Inclination angles

𝜶𝟏 = 𝟎°, 𝒂𝟐 = 𝟒𝟓°,	𝒃𝟐= 𝒃𝟏	 𝜶𝟏 = 𝟎°, 𝒂𝟐 = 𝟒𝟓°,	𝒃𝟐= −𝒃𝟏	



Aligned stars with inclination give more flux

Anti - aligned stars with inclination give less flux

Effect of inclination angles: 



Torques and kicks
Due to asymmetric pointing flux torques and kicks might develop that will 
might affect the orbit or magnetic alignment.

𝒇 = 𝛁 ⋅ 𝝈 −
1
𝑐;
𝜕𝑺
𝜕𝑡

r

Where 𝜎 is the Maxwell tensor:

𝜎56 =
1
4𝜋

𝐸5𝐸6 + 𝐵5𝐵6 −
1
2
𝐸% + 𝐵% 𝛿56



𝜃

𝜃

𝛼0 = 0°, 𝛼- = 45°

For   3.16×10WX𝐺:	 Y%&
Y'

≤ 10JM

Potentially important for 3G GW detectors.



Effect of 𝑏!/𝑏" ratio:



Poynting flux dependency on Ω.

𝐿~	𝛀𝒏	 ⋅ 𝑓(𝛼", 𝛼#, Δ𝜙) 

For single isolated pulsar n=4



Poynting flux dependency on Ω.



• Acceleration of particles from 𝐸|| and 
emission of high energy photons.  

• 𝑬|| =
=| 𝛁×𝑩 |||

?@A
• Emissions happen in the region 

outside the orbital light cylinder at 
points where 𝑬|| is high. 

• Emission from each point contribute 
at the direction of particle’s velocity 
on the appropriate time considering 
the time delay. 

• Luminosity is considered as a 
function of the Poynting flux with a 
distance depended efficiency. 

𝜸 – rays patterns 

𝑑 =
𝒓 ⋅ 𝒗
𝒗

𝒓
𝒗

𝒗 =
𝑬×𝑩 ± (𝐵7𝑩 + 𝐸7𝑬)

𝐵% + 𝐸7%

Gruzinov 2012
Kalapotharakos et al. 2014

Brambilla et al. 2015



𝜶𝟏 = 𝟎°, 𝒂𝟐 = 𝟒𝟓°,	𝒃𝟏= −𝒃𝟐	



𝜶𝟏 = 𝟎°, 𝒂𝟐 = 𝟒𝟓°,	𝒃𝟏= 𝒃𝟐	 𝜶𝟏 = 𝟎°, 𝒂𝟐 = 𝟒𝟓°,	𝒃𝟏= −𝒃𝟐	



Conclusions
• We explored the parameter space of binary neutron star mergers 

and their precursor emissions. 
        144 cases
• The flux varies a lot:

        ~𝟏𝟎𝟒𝟐 − 𝟏𝟎𝟒𝟓𝐁𝟏𝟐𝟐 𝐞𝐫𝐠𝐬J𝟏

• If 𝐿H < 10%𝐿IJKL/MLN	𝛾 −rays might be detectable from CTA.
• Non uniform flux distribution over the sky. 

     𝟓𝟎%	in less than ~1/3 of the sky 
• The Poynting flux dependency on Ω varies.
• Having inclination angles results in different behavior for the aligned 

and anti-aligned cases and potentially implications on the orbits. 

or ~𝟏𝟎𝟒𝟗 − 𝟏𝟎𝟓𝟐𝐁𝟏𝟓.𝟓𝟐 𝐞𝐫𝐠𝐬)𝟏



Thank you!

dimitrios.skiathas@nasa.gov
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