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Blazar

Variability “;
Flux, spectral, and T
polarization = i
variability on time £
scales from years to
minutes 23
Variability in different
frequency regimes g
sometmes
correlated, sometimes
not. El
[T

(Hayashida et al. 2015)
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Numerical approach to modeling
blazar variability

In almost all tme-dependent (leptonic) models for blazar variability:

Solve Fokker-Planck equation for the evolution of the electron
distribution N _(y,1):

8Ne a ( 2 a 28Ne Ne
= 2 ([beooy® — ay — 2Dg N)+— Do e Qs
ot . [ cool Y Y 7] e 5 Y D~y - inj
—— = N ~ -~ =~
cooling Fermi-I  Fermi-Il Fermi-I| escape injection
(system. (diffusion in
en. gain) momentum
space)
Term y = b, ¥? describes continuous energy loss, with Ay/y << 1 for

one mdividual mteraction.

O.k. for synchrotron (with B << B_;) and mverse-Compton (IC) in the
Thomson regime



Inverse-Compton cooling

: = 2
* Thomson regime (gy << 1): & = Epp/(Mc)

e ~v'e => Ay~g —e~ e(Y?P-1)<<y

=> Continuous-loss approximation o.k.

e Klemn-Nishina (KN) regime (ey > 1):
E~Y = Ay~g —€e~y—¢€ ~Y

=> Flectron loses most of 1ts energy 1in 1 interaction

=> Non-continuous cooling!



Numerical approach to modeling IC
cooling in blazars

In almost all tme-dependent (leptonic) models for blazar variability:

KN effects accounted for through the suppression of the KN cross
section and reduced fractional energy loss (compared to g[y?>-1]), but stll
adopting a continuous-cooling approach, e.g., Moderski et al. (2005):

: 4o s / /
Ycool IC = _3mTc ’}"2 /’ fKN(4’}€ ) rad(g )d€
fn(x) = (14 x)~! for x < 10*

" (1 ()—%) for x > 10°

with x = 4vye’.

Reasonably approximates KN throughout most of the spectrum,
but does not reproduce large energy jumps.



Numerical approach to full IC
cooling (incl. large energy jumps)

Integro-differential equation for electron evolution with full IC scattering

kernel (Blumenthal & Gould 1970; Zdzarski 1988):
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wd .."'I-' a..

and y=LE./E, LE=ve, LE.=@/ -1/A4, vr= +7/y)/2

C 1s sharply peaked around y =7’.



Numerical approach to full IC
cooling (incl. large energy jumps)

Integro-differential equation for electron evolution with full IC scattering

kernel (Blumenthal & Gould 1970; Zdzarski 1988):

IN Ay, 1) r e g
i r?;h = —N.(7, rjf C{y. }f'}ld}*'+f Ny, nClHy', vidy' +
‘ ¥ — y(1+9)
S/ + bcontﬂy N.(¥.1)
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[

darrc

where Cly,y') = H[ dxngle) E [.r +(2-rly - EJ[E + Ex]nrl

and y = LE./E, LE=ve, L.=@G/ -1D/MA, r=q +7/y)/2

C 1s sharply peaked around y =7’.
=> In practice: Treat an interval y/(1+0) to y(1+0), with o <<I,
as continuous-cooling term.



Application to 3C279

e Prominent, y-ray bright FSRQ at z = 0.536

e Strongly Compton-dominated SED

* In leptonic models, y-ray emission believed to be external-IC

(BLLR?) dominated

e => KN effects expected to be important at the highest energies.

 Model both quiescent state (Hayashida et al. 2012) and flare n
June 2015 (H.E.S.S. collaboration et al. 2019).

e Using the EMBLEM (Evolutionary Modeling of BLLob EMission)
code (Dmytrnev et al. 2021), extended for applications to FSRQs,
and including non-continuous IC cooling eftects.



Application to 3C279 - Quiescent State

Equilibrium electron distribution Equilibrium SED
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e Notable difference only at lowest energies (particles losing most
of their energy in one scattering)

e Differences in the SED < 10 %.



Application to 3C279 - Flaring State

Flaring-state electron distribution Flaring-State SED
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e Significant (up to factor -10) differences, especially near / beyond

the peaks of the SED.

e Continuous-cooling approx. significantly over-esiimating cooling at
the highest energies.



Summary

Non-continuous Compton cooling effects can
become significant in the case of high Compton-
dominance, external-Compton dominated sources

(FSRQs) 1n flaring states.

Steady-state emuission 1s only neghgibly aftected.

Flaring-state emission exhibits significant excess
emission at energies beyond the SED peaks when
including non-continuous cooling effects.
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