

## Radio-dim, γ-ray-bright Supernova Remnants

Jack Hewitt (UNF), Sajan Kumar, Brian Humensky, on behalf of the *Fermi-*LAT collaboration

11<sup>th</sup> Fermi Symposium September 10, 2024

dr.hewitt@unf.edu

#### **Radio and Gamma-ray SNRs**

• Missing SNRs Problem: Know of ~300, expect ~1-2,000. Deeper radio surveys?



Gamma-ray Space Telescope



Section of Galactic Plane from the SMGPS survey (Goedhart+ 2023). MeerKAT 1.3 GHz radio. Herschel Hi-GAL 70  $\mu$ m and 250  $\mu$ m.

GeV to GHz flux comparison of young and interacting **SNRs** (1SC, LAT collab. 2016). Open circles are extended, filled are point-like sources.

#### Radio and X-ray view of SNR G189.6+3.3

Gamma-ray Space Telescope

smoothed to S/N = 3 to 5 (Camilloni, et al. 2023)



(Yamauchi, et al. 2020)

Gamma-ray Space Telescope

#### LAT detection of SNR G189.6+3.3



- Updated LAT analysis using 15 years, Pass8r2, E ≥ 1 GeV, 4FGL-DR4 model
- Custom template for IC 443 (see next talk by B. Humensky)
- Extended source needed to account for SNR G189.6+3.3
  - PL index = 2.00±0.06
  - RadialDisk with R =  $0.92^{\circ}\pm0.03^{\circ}$ (TS<sub>ext</sub> = 154)
  - Has negligible effect on spectra of IC 443.

#### "Nereides" SNR G107.7-5.1

 2° diameter SNR discovered by imaging narrowband emission line filters in 260 hours of amateur astrophotography (Fesen, et al. 2024)

ermi

Gamma-ray Space Telescope

- No radio counterpart (just outside CGPS survey)
- Extremely faint optical line emission with spatially broad filaments suggests evolved radiative SNR.
- Possible interaction due to morphology of Western filaments

**Figure.** Optical composite image showing [OIII],  $H\alpha$ , and [SII]. Distinct features across the SNR are labeled. (Fesen+ 2024)



### LAT emission from Nereides SNR

- Coincident with FHES J2304.0+5406 from highlatitude extended source search (FHES, LAT collab., 2018) prior to discovery of optical line emission. TS map from FHES is shown.
- Updated LAT analysis using 15 years, Pass8r2, E ≥ 1 GeV, 4FGL-DR4 model
- SNR has hard spectrum,  $\Gamma = 1.8(0.1)$

Gamma-ray Space Telescope

 Overlapping point source 4FGL J2309.0+5425 has similarly hard spectrum, but more curvature. Possible blazar; coincident X-ray point source





#### LAT Extension Fit >1 GeV



Sermi

Gamma-ray Space Telescope

#### **Radial Disk**

•  $TS_{ext} = 78$ 

4

- 3

- 2

- 1

- R<sub>ext</sub> = 0.88°±0.22°
- LogLike: -206612.9





#### **Radial Gaussian** 4

- TS<sub>ext</sub> = 97
- R<sub>ext</sub> = 1.57°±0.22°
- LogLike: -206601.7



#### LAT Extension Fit >1 GeV

Sermi

Gamma-ray Space Telescope

TS contours at 5, 10.



# *Gamma-ray* Two extremely low-luminosity GeV SNRs

Space Telescope

- G189.6+3.3 and G107.7-5.1 are among largest and faintest SNRs detected by LAT so far, probing new luminosity space
- Distance is unknown. Assuming d=1.5 kpc, plot  $L_{GeV}$  vs  $D^2$



#### **Emerging class of GeV SNRs?**

Sermi

Gamma-ray

| Space Telescope |              |                  |                            |          |                                    |
|-----------------|--------------|------------------|----------------------------|----------|------------------------------------|
| Space relescope | SNR          | Diameter         | Energy Flux >GeV           | Photon   | References                         |
|                 |              | (°)              | $(MeV \ cm^{-2} \ s^{-1})$ | Index    |                                    |
|                 | G17.8+16.7   | 0.73             | $1.4 \times 10^{-6}$       | 1.8(0.1) | Devin, et al. 2020                 |
|                 | G118.4+37.0  | 0.52             | $3.1 \times 10^{-6}$       | 1.7(0.1) | Araya 2023                         |
|                 | G150.3 + 4.5 | 1.5              | $5.2 \times 10^{-6}$       | 1.6(0.2) | Devin, et al. 2020                 |
|                 | G279.0+1.1   | 2.8              | $1.9 \times 10^{-5}$       | 1.8(0.1) | Araya 2020                         |
|                 | G288.8-6.3   | 0.92             | $3.3 \times 10^{-6}$       | 2.3(0.1) | Burger-Scheidlin, et al. 2024      |
|                 | G296.5+10.0  | 0.7              | $1.1 \times 10^{-5}$       | 1.8(0.1) | Araya 2013, Ackermann, et al. 2018 |
|                 | G323.7-1.0   | $0.9 \times 0.6$ | $1.6 \times 10^{-6}$       | 1.1(0.2) | Araya 2017                         |
|                 | G107.7-5.1   | 2                | $8.3 \times 10^{-6}$       | 1.8(0.1) | This work                          |
|                 | G189.6+3.3   | 1.5              | $\times 10^{-6}$           | 2.0(0.1) | This work                          |

Simulations of SNR evolution produce central IC dominated SNRs at late ages (Brose, et al. 2021)





- In 16+ years, *Fermi* LAT is detecting numerous faint, large diameter SNRs in low-background regions of galaxy.
  - SNR G189.6+3.3 is detected with the LAT overlapping and adjacent to bright IC 443.
  - SNR G107.7-5.1 is detected coincident with optical emission line filaments.
- Two new members of the growing class of low-luminosity GeV SNRs at high Galactic latitudes with large diameters, flat photon indices, and no or very faint radio counterparts.
- Diversity of gamma-ray SNRs may reflect different progenitor types and environments in which they evolve.