Resolving the gamma-ray SNR IC 443 with *Fermi*-LAT and VERITAS

Brian Humensky for the VERITAS & *Fermi*-LAT Collaborations NASA Goddard Space Flight Center University of Maryland – College Park 11th Fermi Symposium – September 10, 2024

IC 443 – The Jellyfish Nebula

Remnant of a core-collapse SN interacting with surrounding material.

- $\,\circ\,\,$ Interacting with a dense molecular cloud ${\sim}10^5\,\,M_{sun}$ along the south and west.
- Lower-density ionized gas to the northeast.
- Large, very low-density cavity is present in radio continuum emission extending behind and to the west of the SNR.
- Evolving in a very inhomogeneous environment!
- An uncertain age that is likely around 8 kyr (Ustamujic+ 2021).
- ➢ At a distance of 1.5 kpc, ~45' diameter → 20 pc.

IC 443 – The Jellyfish Nebula

- Detected in γ-rays by EGRET, MAGIC, VERITAS, Fermi-LAT, AGILE, HAWC, LHAASO.
- > Previously:
 - Low-energy decrease in the SED consistent with a hadronic origin (Ackermann+ 2013).
 - Shell resolved in GeV/TeV γ -rays (Humensky+ 2015).

- > Full-array operations begin: 2007 16 years of operation.
- > Energy range: ~85 GeV to ~30 TeV.
- > Sensitivity: 1% Crab in 25 hr, 10% in 25 min, Ang. resolution: 0.08° resolution @ 1 TeV.
- > Prototype SCT telescope for CTA on site.
- Funded by National Science Foundation (USA), Smithsonian Astrophysical Observatory (USA), Natural Sciences and Engineering Research Council (Can), Helmholtz

Fermi Symposium: IC

Association (Ger).

9/9/2024

Sajan Kumar, Maryland

Fred Lawrence Whipple Observatory

Southern Arizona, USA

VERITAS analysis using 155 hr taken 2007-2015. 0.18 – 4.5 TeV.

- Fermi analysis above 5 GeV using 15 years of Fermi-LAT Pass8r3v3 Source data using the 4FGL-DR4 model
 - PSF classes 2, 3 to match
 VERITAS PSF.

VERITAS, Fermi Images of IC 443

VERITAS, Fermi Images of IC 443

VERITAS

6

Comparison with Gas Tracers

➢Gamma-ray emission broadly traces dense and shocked gas surrounding IC 443 but not perfectly, particularly in the north.

All maps: white contours are VERITAS at 3, 6, 9, 12 σ, yellow contours are HCO+ 1-0 shocked gas.

9/9/2024

Fermi Symposium: IC 443 VERITAS Fermi-LAT Humensky

Gamma-ray Spectrum of Entire IC 443

Broad-band γ-ray spectrum integrated over entire SNR aligns well with previous measurements.

 ○ VERITAS: used 0.35^o radius region.

Spectrum extends smoothly from Fermi to VERITAS range, with index gradually softening from -2.4 to -2.9.

Fermi Symposium: IC 443 VERITAS Fermi-LAT Humensky

Regional Spectra

IC 443 is divided into four regions, for which SEDs are extracted using spatial templates (LAT, Tajima+ 2007) and 0.13° circular radii (VERITAS).

- \circ Regions selected to follow the gas distribution:
 - Region 1 shocked molecular cloud.
 - Regions 2&3 shocked molecular/atomic/ionized gas.
 - Region 4 no shocked gas observed.
- Because the shapes of the regions are slightly mismatched, we apply a scaling factor calculated from the LAT spatial template, to slightly increase the VERITAS fluxes.

Regional Spectra

 10^{-14}

 10^{-2}

Region3

Region4

constant across all bands.

Fermi Symposium: IC 443 VERITAS Fermi-LAT Humensky

 10^{-1}

Energy [TeV]

100

10

1500

1000

[GeV/TeV] flux

500

10¹

9/9/2024

Energy-Resolved VERITAS View of IC 443

 \Box Contours are VERITAS 3, 6, 9, 12 σ from all-energy map.

Change in morphology around 1 TeV where the brightest region decreases significantly in comparison to the rest of the shell. By fitting the LAT data as a spatial template, we find that the bright spot decreases by ~40% in brightness relative to the shell (ΔAIC = -8.4).

Summary

- IC 443 is resolved as an asymmetric shell with a very similar morphology at GeV (*Fermi*-LAT) and TeV energies (VERITAS).
- The γ-ray morphology is not completely explained by any multiwavelength spatial template (radio, X-ray, shocked gas).
- This motivates a spatially-resolved analysis of four distinct regions of the SNR.
- The regions vary greatly in flux but show largely the same spectra.
 - $_{\odot}$ However, we see evidence for a decrease in the flux of the brightest region at the highest energies seen by VERITAS.
 - \circ The faintest region 4 is devoid of molecular gas yet has the largest the γ -ray-to-gas ratio.

Backup

Little Variation in Spectra across Remnant

Region	VERITAS			Fermi-LAT			Flux Ratio
	Model	Parameters	Integral Flux	Model	Parameters	Integral Flux	
	(Best)		(0.2 - 10 TeV)	(Best)		$(5-100 { m ~GeV})$	$({\rm GeV}/{ m TeV})$
		$\Gamma_1 = 2.20 \pm 0.45$					
1	SBPL	$\Gamma_2 = 3.86 \pm 0.53$ $E_b = 0.5 \pm 0.2$ TeV	$(6.0 \pm 0.5) \times 10^{-12}$	PL	$\Gamma = 2.35 \pm 0.05$	$(3.2 \pm 0.1) \times 10^{-9}$	533 ± 47
2	PL	$\Gamma = 2.73 \pm 0.17$	$(2.2 \pm 0.3) \times 10^{-12}$	PL	$\Gamma = 2.52 \pm 0.11$	$(1.3 \pm 0.1) \times 10^{-9}$	591 ± 93
3	PL	$\Gamma=2.95\pm0.21$	$(2.9 \pm 0.5) \times 10^{-12}$	PL	$\Gamma = 2.58 \pm 0.08$	$(1.7 \pm 0.1) \times 10^{-9}$	586 ± 107
4	PL	$\Gamma=2.46\pm0.53$	$(7.2 \pm 2.9) \times 10^{-13}$	PL	$\Gamma = 2.38 \pm 0.12$	$(7.9 \pm 0.6) \times 10^{-10}$	1097 ± 450
Whole- SNR	PL	$\Gamma = 2.94 \pm 0.09$	$(1.2 \pm 0.1) \times 10^{-11}$	PL	$\Gamma = 2.52 \pm 0.03$	$(7.0 \pm 0.1) \times 10^{-9}$	583 ± 49