

Study of Local Clouds using HI Line Profile

T. Mizuno (Hiroshima Univ.), K. Hayashi (ISAS/JAXA), I. Moskalenko, E. Orlando (Stanford Univ.), A. Strong (MPE) On behalf of the Fermi-LAT collaboration 2024 Sep. 10 @ Fermi Symposium 2024 (College Park, MA, USA)

Motivation: Study of Local Gas & CRs

γ-ray provides vital information of interstellar gas & CRs $I_{\gamma} \propto I_{CR} \cdot N_{H}$

Issue: Uncertainty is still large (30-50% level) even in local environment

Key: <u>Identify optically thin HI</u> $(N_{HI} \propto W_{HI})$

Gamma-ray Space Telescope

> $q_{\gamma} = I_{\gamma}/N_{H} (\propto I_{CR})$ varies considerably, higher than expected (directly-measured CR)

Broad (warm) HI is likely to be optically-thin (Kalberla+20), and we succeeded in modeling γ -rays of MBM 53-55 clouds and Pegasus loop using <u>HI line width</u> (Mizuno+22)

Now we will update the procedure and apply it to other local clouds (using 15 years data)

To study local gas and CRs, we analyzed <u>5 nearby molecular clouds</u> (see map) using HI-line profile. We first updated the procedure through re-analysis of MBM & Pegasus, then studied the other 4 regions

Properties of clouds (Dame+87, Yamamoto+06)

Cloud	Distance (pc)	M _{H2} (M _{Sun})	(C
MBM&Pegasus	~150	~0.1x10 ⁴	P
R CrA	~150	~0.3x10 ⁴	
Chamaeleon	~200	~1x10 ⁴	
Cep & Pol	~450	~2x10 ⁵	
Orion	~500	~3x10 ⁵	
. Mizuno	1	202	4.09.10

Procedure of γ-ray Data Analysis (1): MBM & Pegasus

We prepared 4 gas templates; W_{CO} map, non-local HI map (velocity based), and <u>narrow/broad-HI maps</u> (line width based)

• Different spatial distributions allow to <u>distinguish different gas phases</u>, and broad-HI map allows to <u>accurately measure HI emissivity (CR intensity</u>)

There remains residual gas (RG; presumably CO-dark H_2) and Inverse Compton (IC) contributions. We prepared several templates ----and tested them against γ -ray data (to cope with uncertainties)

Gamma-ray Space Telescope

RG template, 10⁻⁶

Procedure of γ-ray Data Analysis (2): MBM & Pegasus

Gamma-ray Space Telescope

We fit γ -ray data with W_{CO}, $3N_{HI,thin}$, RG, IC, isotropic and sources. We found that narrow-HI gives higher emissivity than broad-HI (left), <u>confirming narrow HI to be opt. thick</u> (N_{HI} > $N_{HI,thin}$) We evaluated correction factor for narrow-HI by looking at emissivity ratio wrt broad-HI and constructed single local $N_{HI,corr}$ map

We selected best RG&IC combination based on logL. Fit using single local N_{HI,corr} map gives <u>emissivity spectrum compatible with a model based on directly-measured CR</u> (right)

Common Trends in y-ray Data Analysis

We found that narrow-HI always gives larger emissivity than broad HI, <u>confirming narrow HI to</u> <u>be optically thick</u>

We also found that N_{HI,corr} gives <u>emissivity</u> <u>spectrum compatible with directly-measured CR</u>

(RG template; T353 gives better fit than radiance)

emissivity ratio of narrow-HI to broad-HI (preliminary)

MBM&Pegasus	1.27+/-0.05
RCrA	1.12+/-0.03
Chamaeleon	1.21+/-0.04
Cep&Pol	1.61+/-0.07
Orion	1.39+/-0.03

γ-ray Emissivity (CR Spectrum) in Local Environment

Gamma-ray Space Telescope

Most of previous works used HI templates with uniform spin temperature (T_s), and reported γ -ray emissivity larger than that expected from directly-measured CR spectra

Analysis using HI line width gives emissivities <u>compatible with LIS</u>. <u>Hint of higher emissivity</u> (CR intensity) in areas closer to the inner Galaxy and Galactic plane

Gas Property in Local Environment

Assuming uniform CR intensity in each region, we evaluated integrated H column density (proportional to gas mass) of each gas phase in unit of 10²² cm⁻² deg²

Assuming that RG template traces CO-dark H₂, ratio of CO-dark H₂ to optical depth correction is 2-7, indicating that <u>dark gas is mainly CO-dark H2</u>

	MBM&Pegasus	RCrA	Chamaeleon	Cep&Pol	Orion
Broad HI	39.9	59.2	37.3	19.1	57.2
Narrow HI (opt. thin case + correction)	18.0 + 5.0	18.5 + 2.2	16.0 + 3.4	7.8 +4.7	19.9 + 7.7
Non-local HI	2.8		0.7	4.2	1.8
Residual gas	9.0	15.7	9.4	10.5	21.4
CO-bright H2	1.1	2.6	7.7	10.8	26.6
(opt. thin assumed for non-local HI)					

T. Mizuno

Space Telescope

2024.09.10

(Droliminary)

We applied HI-line-profile based analysis to nearby clouds to accurately measure CR and gas properties

- Narrow HI always gives larger emissivity, confirming it to be <u>optically-thick</u>
- Broad HI gives <u>emissivity (CR intensity) compatible with a model for LIS. Hint</u> of higher emissivity in areas closer to inner Galaxy and Gal. plane is observed
- We found that ratio of CO-dark H2 (traced by residual gas template) to optical depth correction is >1, indicating that <u>dark gas is mainly CO-dark H2</u>
- Application of HI-line-profile based analysis to other nearby clouds and Galactic plane is worth doing

Thank you for your attention

- Ackermann et al. 2012, ApJ 755, 22
- Ackermann et al. 2012, ApJ 756, 4
- Ackermann et al. 2017, ApJ 840, 43
- Casandjian et al. 2022, ApJ 940, 116
- Dame et al. 1987, ApJ 322, 706
- Grenier et al. 2005, Science 307, 1292
- Hayashi et al. 2019, ApJ 884, 130
- Heiless & Troland 03, ApJ 586, 1067
- Kalberla et al. 2020, A&A 639, 26
- Orlando 2018, MNRAS 475, 2742
- Planck Collab. 2015, A&A 582, 31
- Porter et al. 2017, ApJ 846, 23
- Mizuno et al. 2022, ApJ 935, 97
- Yamamoto et al. 2006, ApJ 642, 307

T. Mizuno

Backup Slide

HI-line Profiles

(see also Heiless & Troland 03)

Kalberla+20 found narrow-line HI gas is associated with dark gas [gas not properly traced by HI and CO lines] and broad-line HI gas with optically thin HI

- T_D (Doppler temperature)=22* δv^2
- Vertical axis shows ratio of N_H^{tot} to N_{HI}^{thin} (estimated using dust emission)
- Areas of ratio>>1 (dark-gas rich) are with narrow-line HI

We attribute gas with $T_D < 1000$ K as narrow HI and that with $T_D > 1000$ K as broad HI

T. Mizuno

Dermi Gamma-ray Space Telescope

Gamma-ray Space Telescope

Construction of Residual Gas Template

Some fraction of ISM gas is optically thick HI or CO-dark H_2 , and is not properly traced by HI and CO lines (Grenier+05). While optically thick HI may be traced by narrow-line HI, CO-dark H_2 cannot. To construct this <u>residual gas (RG) template</u> for gamma-ray data analysis, we developed an iterative procedure. We use Planck dust emission (D_{em}) maps, specifically R2 radiance map, (original) T353 map, and T353 map by Casandjian+22

(1a) Select areas of low W_{CO} (W_{CO} < $W_{CO_{th}}$), high $T_d(T_d$ > $T_{d_{th}}$), and are broad-HI rich (frac of $W_{HI, broad}$ > f_{th}) throughout step #1

(1b) (skip in the 1st iteration) Examine residual and select pixels within peak +/- 3*rms.

(1c) Fit D_{em} map with $W_{HI, narrow}$, $W_{HI, broad}$, and offset. If coefficients do not change significantly, quit the loop. Otherwise move back to (1b)

(2) Use obtained fit coefficients and calculate residuals of D_{em} in high W_{CO} areas for the entire ROI. Fit the residual with W_{CO}

(3) Use three coefficients and an offset (obtained in steps #1 and #2) and construct the RG template with median-filter (sigma=10') applied
T. Mizuno 2024.09.10

Residual of D_{em} (based on τ 353 byCasandjian+22, in 10⁻⁶)

т353 Maps: Original vs. Casandjian+22 Dermi

Gamma-ray Space Telescop

> We confirmed difference of T353 by ~0.7e-6 in MBM 53-55 clouds (left) and other regions

> Two RG templates are similar as expected (middle and right) and give similar logL in gamma-ray data analysis

RG Templates (based on Casandjian+22)

RG templates of 4 other region; fit coefficient ratios (narrow-HI to broad-HI) are 1.47 (MBM53-55), 1.43 (RCrA), 1.47 (Cham), 1.67 (Cep&Polaris), and 1.19 (Orion)

Gamma-ray Space Telescope

Opacity (σ_{e353}) for broad HI is 0.84 (MBM53-55), 0.67 (RCrA), 0.91 (Cham), 0.73 (Cep&Pol), and 0.79 (Orion) in 10⁻²⁶ cm², similar to that of Casandjian+22 (0.89)

Gamma-ray Space Telescope	Testing IC Models				
IC map @ 1GeV	Std-SA0 (100% sources in 2D disk)		IC map @ 1GeV	Std-SA100 (100% sources in spiral-arm)	10-7
80 60 40 20 20 20 20 20 20 20 20 20 20 20 20 20	-100 -50 0 50 100 150 -Galactic Longitude (deg)	10 ⁻⁸	80 60 40 20 20 20 20 20 20 20 20 20 20 20 20 20	-100 -50 0 50 100 150 -Galactic Longitude (deg)	10 ⁻⁸ 10 ⁻⁹ 10 ⁻¹⁰

Porter+17 provides 9 IC models (3 ISRFs, 3 CR distributions)

While 3 ISRFs give similar IC maps, 3 CR source distributions give different spatial distribution; we prepare 3 IC maps of different CR source distributions (with "standard" ISRF) and adopt the model that gives best fit in gamma-ray data analysis

CR & Gamma-Ray Fit Results (Mizuno+22)

- Our LIS model reproduces data & agrees with Boschini+20
- Scaling factor for γ -ray is 1.07+/-0.03
- $R_{br1}=7.1+/-0.3$ (GV) and $\delta_1=0.07+/-0.01$

T. Mizuno

Samma-ray

CR & Gamma-Ray Fit to Constrain LIS (Mizuno+22)

We used CR & γ -ray data constrain the LIS

- LIS is modeled as a power-law (PL) of momentum(p) with two breaks
 - \circ α_1 and α_2 show indices in high and medium energy ranges
 - \circ p_{br1} and δ_1 represent the 1st spectral break presumably due to a break in the interstellar diffusion coefficient inferred by B/C ratio (e.g., Ptuskin+06)
 - p_{br2} and δ_2 represent the 2nd break due to ionization loss (e.g., Cummings+16)
 - \circ α_3 show the index below this break
 - force-field approximation for solar modulation
- γ-ray emissivity; p-p (Kamae+06 and AAfrag) + e-bremss (Orlando2018)
- We take into account CR α and ISM He, and fit CR & γ -ray data simultaneously

$$J(p) \propto \left[\left(\frac{p}{p_{\text{br1}}} \right)^{\alpha_1/\delta_1} + \left(\frac{p}{p_{\text{br1}}} \right)^{\alpha_2/\delta_1} \right]^{-\delta_1} \times \left[1 + \left(\frac{p}{p_{\text{br2}}} \right)^{\alpha_3/\delta_2} \right]^{-\delta_2}$$

T. Mizuno

Gamma-ray

18/9

RCrA Molecular Cloud (Fermi Bubble)

We employed the FB template in Ackermann+17 (upper right), but there remain coherent positive residuals in $(I,b)\sim(0,-30)$ and (-10,-32) and coherent negative residuals in I=330-334 (bottom)

• Those positive residuals correspond to holes in the template map that positionally coincide with brobs in soft component (Ackermann+17), and negative residuals are at peripherals of the FB template

We filled holes in the template and removed peripherals; new template gives improved fit to γ -ray data

Space Telescope

RCrA Molecular Cloud

Different spatial distributions of narrow and broad HI will allow distinguishing different gas phases (right panels)

We fit γ -ray data (btm left) with narrow-/broad-HI templates and others (RG, W_{CO}, etc.). We employed FB template of Ackermann+17

Narrow HI gives larger emissivity, indicating it to be <u>optically-thick HI</u>, and broad HI gives emissivity <u>similar to the model for LIS</u> in >400 MeV

Chamaeleon Molecular Cloud

Different spatial distributions of narrow and broad HI will allow distinguishing different gas phases (right panels)

We fit γ -ray data (btm left) with narrow-/broad-HI templates and others (RG, W_{CO}, etc.). Areas dominated by IVC masked (cf. Hayashi+19)

Narrow HI gives larger emissivity, indicating it to be <u>optically-thick HI</u>, and broad HI gives emissivity <u>similar to the model for LIS</u> in >400 MeV

Different spatial distributions of narrow and broad HI will allow distinguishing different gas phases (right panels)

We fit γ -ray data (btm left) with narrow-/broad-HI templates and others (RG, W_{CO}, etc.). We constructed "merged" RG template

Narrow HI gives larger emissivity, indicating it to be <u>optically-thick HI</u>, and broad HI gives emissivity <u>similar to the model for LIS</u> in >400 MeV

2024.09.10

Orion Molecular Cloud

Different spatial distributions of narrow and broad HI will allow distinguishing different gas phases (right panels)

We fit γ -ray data (btm left) with narrow-/broad-HI templates and others (RG, W_{CO}, etc.). RG map was constructed with bright IR sources masked

Narrow HI gives larger emissivity, indicating it to be <u>optically-thick HI</u>, and broad HI gives emissivity <u>similar to the model for LIS</u> in >400 MeV

Wco Map and X_{CO} Sermi

Region	X _{CO} (10 ₂₀ cm ² (K km/s) ⁻¹)
MBM&Pegasus	0.55
RCrA	1.67
Chamaeleon	0.94
Cep&Polaris	0.90
Orion	1.36

(Preliminary)

Gamma-ray Space Telescope

