

Study of Local Clouds using HI Line Profile

T. Mizuno (Hiroshima Univ.), K. Hayashi (ISAS/JAXA), I. Moskalenko, E. Orlando (Stanford Univ.), A. Strong (MPE) On behalf of the Fermi-LAT collaboration 2024 Sep. 10 @ Fermi Symposium 2024 (College Park, MA, USA)

1

Motivation: Study of Local Gas & CRs

γ-ray provides vital information of interstellar gas & CRs I,∝l_{cR} · N_H

Issue: Uncertainty is still large (30-50% level) even in local environment

6.4 **-ray emissivity (>400 MeV)** HIY-ray emissivity $[10^{-27} \gamma s^{-1} s r^{-1} + r^{-1}]$

on on the contract of the contr Cha **RCrA** Cep-Pol **IVA** (Planck Collab. 2015) Ori 8.3 8.5 8.6 8.7 8.8 8.9 9 8.4 Galactocentric radius [kpc] **T. Mizuno 2024.09.10 2/9**

 $q_v = I_v/N_H$ ($\propto I_{CR}$) varies considerably, higher than expected (directly-measured CR)

Broad (warm) HI is likely to be optically-thin (Kalberla+20), and we succeeded in modeling γrays of MBM 53-55 clouds and Pegasus loop using HI line width (Mizuno+22)

Now we will update the procedure and apply it to average of high lat.
———————————————————— other local clouds (using 15 years data)

 \mathbb{D} erm Gamma-ray Space Telescop

To study local gas and CRs, we analyzed **5** nearby molecular clouds (see map) using HI-line profile. We first updated the procedure through re-analysis of MBM & Pegasus, then studied the other 4 regions

Properties of clouds (Dame+87, Yamamoto+06)

Procedure of γ-ray Data Analysis (1): MBM & Pegasus

We prepared 4 gas templates; W_{CO} map, non-local HI map (velocity based), and narrow/broad-HI maps (line width based)

Different spatial distributions allow to distinguish different gas phases, and broad-HI map allows to accurately measure HI emissivity (CR intensity)

There remains residual gas (RG; presumably CO-dark H_2) and Inverse Compton (IC) contributions. We prepared several templates and tested them against γ-ray data (to cope with uncertainties)

 ∞ erml Gamma-ray Space Telescop

RG template, 10-6

Procedure of γ-ray Data Analysis (2): MBM & Pegasus

We fit γ-ray data with W_{CO} , 3N_{HLthin}, RG, IC, isotropic and sources. We found that narrow-HI gives higher emissivity than broad-HI (left), confirming narrow HI to be opt. thick $(N_H > N_{H1,thin})$ We evaluated correction factor for narrow-HI by looking at emissivity ratio wrt broad-HI and

constructed single local $N_{HI,corr}$ map

 ∞ erml Gamma-ray Space Telescop

> We selected best RG&IC combination based on logL. Fit using single local N_{HI,corr} map gives emissivity spectrum compatible with a model based on directly-measured CR (right)

Common Trends in γ-ray Data Analysis

We found that narrow-HI always gives larger emissivity than broad HI, confirming narrow HI to be optically thick

We also found that $N_{HI,corr}$ gives emissivity spectrum compatible with directly-measured CR

(RG template; τ353 gives better fit than radiance)

emissivity ratio of narrow-HI to broad-HI (preliminary)

γ-ray Emissivity (CR Spectrum) in Local Environment

 \mathcal{D} erml Gamma-ray Space Telescop

> Most of previous works used HI templates with uniform spin temperature (T_s) , and reported γ ray emissivity larger than that expected from directly-measured CR spectra

Analysis using HI line width gives emissivities compatible with LIS. Hint of higher emissivity (CR intensity) in areas closer to the inner Galaxy and Galactic plane

Gas Property in Local Environment

Assuming uniform CR intensity in each region, we evaluated integrated H column density (proportional to gas mass) of each gas phase in unit of 10^{22} cm⁻² deg²

Assuming that RG template traces CO-dark H₂, ratio of CO-dark H₂ to optical depth correction is 2-7, indicating that dark gas is mainly CO-dark H2

 \mathcal{D} erm Gamma-ray Space Telescop

 (Dr_o)

We applied HI-line-profile based analysis to nearby clouds to accurately measure CR and gas properties

- Narrow HI always gives larger emissivity, confirming it to be optically-thick
- Broad HI gives emissivity (CR intensity) compatible with a model for LIS. Hint of higher emissivity in areas closer to inner Galaxy and Gal. plane is observed
- We found that ratio of CO-dark H2 (traced by residual gas template) to optical depth correction is >1, indicating that dark gas is mainly CO-dark H2
- Application of HI-line-profile based analysis to other nearby clouds and Galactic plane is worth doing

Thank you for your attention

T. Mizuno 2024.09.10 9/9

- Ackermann et al. 2012, ApJ 755, 22
- Ackermann et al. 2012, ApJ 756, 4
- Ackermann et al. 2017, ApJ 840, 43
- Casandjian et al. 2022, ApJ 940, 116
- Dame et al. 1987, ApJ 322, 706
- Grenier et al. 2005, Science 307, 1292
- Hayashi et al. 2019, ApJ 884, 130
- Heiless & Troland 03, ApJ 586, 1067
- Kalberla et al. 2020, A&A 639, 26
- Orlando 2018, MNRAS 475, 2742
- Planck Collab. 2015, A&A 582, 31
- Porter et al. 2017, ApJ 846, 23
- Mizuno et al. 2022, ApJ 935, 97
- Yamamoto et al. 2006, ApJ 642, 307

Backup Slide

HI-line Profiles

(see also Heiless & Troland 03)

Kalberla+20 found narrow-line HI gas is associated with dark gas [gas not properly traced by HI and CO lines] and broad-line HI gas with optically thin HI

- T_D (Doppler temperature)=22* δv^2
- \bullet Vertical axis shows ratio of N_H ^{tot} to N_{HI} ^{thin} (estimated using dust emission)
- Areas of ratio>>1 (dark-gas rich) are with narrow-line HI

We attribute gas with T_D <1000 K as narrow HI and that with T_D >1000 K as broad HI

 \mathcal{D} erm l Gamma-ray Space Telescope

\mathcal{D} erm Gamma-ray Space Telescop

Construction of Residual Gas Template

Some fraction of ISM gas is optically thick HI or CO-dark H_2 , and is not properly traced by HI and CO lines (Grenier+05). While optically thick HI may be traced by narrow-line HI, CO-dark $H₂$ cannot. To construct this residual gas (RG) template for gamma-ray data analysis, we developed an iterative procedure. We use Planck dust emission (D_{em}) maps, specifically R2 radiance map, (original) τ353 map, and τ353 map by Casandjian+22

(1a) Select areas of low W_{CO} (W_{CO} < W_{CO} _{th}), high $T_d(T_d$ > T_{d} _{th}), and are broad-HI rich (frac of $W_{HI,broad} > f_{th}$) throughout step #1

(1b) (skip in the 1st iteration) Examine residual and select pixels within peak +/- 3*rms.

(1c) Fit D_{em} map with $W_{HI, \text{ narrow}}$, $W_{HI, \text{ broad}}$, and offset. If coefficients do not change significantly, quit the loop. Otherwise move back to (1b)

(2) Use obtained fit coefficients and calculate residuals of $D_{\rm em}$ in high W_{CO} areas for the entire ROI. Fit the residual with W_{CO}

(3) Use three coefficients and an offset (obtained in steps #1 and #2) and construct the RG template with median-filter (sigma=10') applied Residual of D_{em}
(based on **1353 byCasandjian+22, in 10-6)**

τ353 Maps: Original vs. Casandjian+22

 ∞ ermi Gamma-ray Space Telescop

> We confirmed difference of τ353 by ~0.7e-6 in MBM 53-55 clouds (left) and other regions

Two RG templates are similar as expected (middle and right) and give similar logL in gamma-ray data analysis

RG Templates (based on Casandjian+22)

RG templates of 4 other region; fit coefficient ratios (narrow-HI to broad-HI) are 1.47 (MBM53-55), 1.43 (RCrA), 1.47 (Cham), 1.67 (Cep&Polaris), and 1.19 (Orion)

Opacity (σ_{e353}) for broad HI is 0.84 (MBM53-55), 0.67 (RCrA), 0.91 (Cham), 0.73 (Cep&Pol), and 0.79 (Orion) in 10-26 cm2, similar to that of Casandjian+22 (0.89)

 ∞ *ermi* Gamma-ray Space Telesco

Porter+17 provides 9 IC models (3 ISRFs, 3 CR distributions)

While 3 ISRFs give similar IC maps, 3 CR source distributions give different spatial distribution; we prepare 3 IC maps of different CR source distributions (with "standard" ISRF) and adopt the model that gives best fit in gamma-ray data analysis

CR & Gamma-Ray Fit Results (Mizuno+22)

- Our LIS model reproduces data & agrees with Boschini+20
- Scaling factor for γ -ray is 1.07+/-0.03
- R_{br1} =7.1+/-0.3 (GV) and δ_1 =0.07+/-0.01

 ∞ erml Gamma-ray

CR & Gamma-Ray Fit to Constrain LIS (Mizuno+22)

We used CR & γ-ray data constrain the LIS

- LIS is modeled as a power-law (PL) of momentum(p) with two breaks
	- \circ α_1 and α_2 show indices in high and medium energy ranges
	- \circ p_{br1} and δ_1 represent the 1st spectral break presumably due to a break in the interstellar diffusion coefficient inferred by B/C ratio (e.g., Ptuskin+06)
	- \circ p_{br2} and δ_2 represent the 2nd break due to ionization loss (e.g., Cummings+16)
	- \circ α_3 show the index below this break
	- force-field approximation for solar modulation
- γ-ray emissivity; p-p (Kamae+06 and AAfrag) + e-bremss (Orlando2018)
- We take into account CR α and ISM He, and fit CR & γ -ray data simultaneously

T. Mizuno
$$
J(p) \propto \left[\left(\frac{p}{p_{\text{br1}}} \right)^{\alpha_1/\delta_1} + \left(\frac{p}{p_{\text{br1}}} \right)^{\alpha_2/\delta_1} \right]^{-\delta_1} \left[1 + \left(\frac{p}{p_{\text{br2}}} \right)^{\alpha_3/\delta_2} \right]^{-\delta_2} \right]
$$

 \mathcal{D} erm Gamma-ray Space Telesco

RCrA Molecular Cloud (Fermi Bubble)

We employed the FB template in Ackermann+17 (upper right), but there remain coherent positive residuals in (l,b) \sim $(0,-30)$ and $(-1,0,0)$ 10,-32) and coherent negative residuals in l=330-334 (bottom)

Those positive residuals correspond to holes in the template map that positionally coincide with brobs in soft component (Ackermann+17), and negative residuals are at peripherals of the FB template

We filled holes in the template and removed peripherals; new template gives improved fit to γ-ray data

 \mathbb{D} erm Gamma-ray Space Telescop

RCrA Molecular Cloud

Different spatial distributions of narrow and broad HI will allow distinguishing different gas phases (right panels)

We fit γ-ray data (btm left) with narrow-/broad-HI templates and others (RG, W_{CO} , etc.). We employed FB template of Ackermann+17

Chamaeleon Molecular Cloud

Different spatial distributions of narrow and broad HI will allow distinguishing different gas phases (right panels)

We fit γ-ray data (btm left) with narrow-/broad-HI templates and others (RG, W_{CO} , etc.). Areas dominated by IVC masked (cf. Hayashi+19)

Cep&Polaris Flare

Different spatial distributions of narrow and broad HI will allow distinguishing different gas phases (right panels)

We fit γ-ray data (btm left) with narrow-/broad-HI templates and others (RG, W_{CO} , etc.). We constructed "merged" RG template

Orion Molecular Cloud

Different spatial distributions of narrow and broad HI will allow distinguishing different gas phases (right panels)

We fit γ-ray data (btm left) with narrow-/broad-HI templates and others (RG, W_{CO} , etc.). RG map was constructed with bright IR sources masked

Wco Map and X_{CO} Sermi

(Preliminary)

Gamma-ray
Space Telescope

