

GRB 221009A: the B.O.A.T Burst that Shines in Gamma Rays

http://arxiv.org/abs/2409.04580

<u>Nicola Omodei (</u>Stanford University) Elisabetta Bissaldi, Philippe Bruel, Niccolò Di Lalla, Roberta Pillera, on behalf of the Fermi LAT collaboration

11th International Fermi Symposium

- GRB221009A was an extraordinary event
 - A burst as energetic (~10⁵⁵ erg) and as close to Earth (z=0.151) as 221009A is thought to be a once-in-10,000-year event. The B.O.A.T. is the Brightest Of All Time

11th International Fermi Symposium

•

- LHAASO detection of the TeV afterglow
 - LHAASO Collaboration. 2023

- Dust scattering rings visible in Swift and XMM
 - Williams at al. 2023
 - Tiengo et al, 2023

11th International Fermi Symposium

- - Ravasio et al. 2024

- X-ray polarization UL on both prompt and afterglow
- IXPE collaboration (Neuro et al. 2023)

Fermi LAT observations, and Bad Time Interval (BTI)

- GRB 221009A was at large incident angle (~70°) at the time of the GBM trigger, and quickly left the LAT field of view. Re-entered ~4ks later
 - Low exposure during the prompt phase
 - Afterglow well sampled
- Effects in the LAT due to high flux of hard X rays
 - Extra "hits" in the tracker
 - Decrease of the live time due to extra veto in the ACD
 - The energy can be overestimated by up to 300 MeV

Nicola Omodei – Stanford/KIPAC

11th International Fermi Symposium

How we fixed the problem

- Developed a modified energy estimator using only the strips around the event track; 1.
- We use Earth-limb data to constrain the selection efficiency; 2.
- We use the information in the top corner of the tracker and the information in the bottom ACD to 3. define the boundaries of the BTI $[T_0+216.6 - T_0+280.6];$
- 4. We perform Monte Carlo simulations to estimate the selection effective area as a function of time, as well as the false positive rate due to the LE background;

290 T-T₀[s]

We apply a template fit approach to derive the HE emission light curve. 5.

Example of spatial template fitting for one energy bin

Nicola Omodei – Stanford/KIPAC

11th International Fermi Symposium

Fermi composite light curve

- Triggering pulse: Combining GBM and LAT data and using ThreeML for fitting.
 - Comptonized model (PL*exp cut off) preferred in all intervals

- Cut off at very high energy (15 MeV)
- High-energy light curve precedes the low energy LC (like GRB 130427A, indicative of synchrotron
- Softening of the spectrum (-1.36 \rightarrow -1.88)
- Peak energy "cools down" (15 MeV \rightarrow 0.33 MeV)

Fermi composite light curve

- n7 [10 keV - 900 keV]

- Prompt emission: Extremely high flux of Hard X-rays increased the noise in all LAT subsystems
 - The LAT was not designed for this!
- BTI definition:
 - T<216.6 and T>280.6: LAT data OK!
 - [216.6-280.6] NOT USABLE with standard analysis
 - We used the results of the template fitting
 - Appendix A of our paper (<u>http://arxiv.org/abs/2409.04580</u>, entirely dedicated to describe this analysis.
- ✤ During the BTI: LAT shows a single peak as opposed as the two peaks from the GBM.
- ✤ Flux maximum in the BTI (important for measuring the energetics!)
- ☆ 4 event >10 GeV arrive during BTI (highest at 99.4 GeV, breaking the GRB130427A record)
- ★ Gamma-gamma opacity => Lower limit for the bulk Lorentz factor: Γ ~500

Space Telescope

The afterglow phase

400 GeV

15 GeV

24 GeV

- After the gap due to Earth occultation, flux decays as a power law, with constant spectral index (typical of GeV-detected afterglow)
- Estimated duration: 176ks (2 days, <u>new</u> <u>record!</u>)
- 3 events >10 GeV, one at 400 GeV! (<u>New</u> record!)

$T-T_0$	Energy	Prob.	Conv. type.	Ang. Sep.				
(s)	(GeV)			(°)				
Prompt								
240.336	99.3	_	Back	0.70^{\dagger}				
248.427	75.2	1.000	Back	0.05				
251.724	38.9	1.000	Back	0.25				
279.342	65.0	1.000	Front	0.19				
Extended								
10475.104	24.4	0.998	Front	0.10				
16176.428	14.7	0.993	Front	0.16				
33552.966	397.7	1.000	Back	0.02				

11th International Fermi Symposium

Temporal evolution of the 100 MeV-100GeV light curve

- LHAASO-WCDA detector light curve (0.3- 5 TeV) is displayed, but <u>not used in the fit</u>.
- Best fitting model: f0+f1+f2
 - Overall, the FS model cannot explain the pulses during the prompt emission, so it is a subdominant component at early time
 - At late time, emission dominated by the FS model.
 - The FS component is very similar to the LHAASO measured flux
- From the peak time of the FS light curve, we can estimate the bulk Lorentz factor (Nappo et al. 2014, Ghirlanda et al. 2018): $\Gamma \sim 250 \pm 10$ (wind, s = 2), $\Gamma \sim 520 \pm 40$ (ISM, s = 0)
- If we assume the derivation from Sari & Piran 99 (same as in the LHAASO paper) we obtain $\Gamma \sim 440 (ISM,s=0)$ as in their paper.
- Integrating the light curve, we can also estimate the energy released (0.1-100 GeV): $E_{iso}\sim 2\times 10^{53} erg$

Afterglow model from Nakar & Piran 2004
$$f_0(T) = K \left(\frac{1}{2} \left(\frac{T - T_{on}}{\tau}\right)^{-\xi \alpha_1} + \frac{1}{2} \left(\frac{T - T_{on}}{\tau}\right)^{-\xi \alpha_2}\right)^{-\frac{1}{\xi}}$$

11th International Fermi Symposium

Pulse model from model from Norris et al. 2005 (also adopted by Hakkila and Preece, 2014)

$$f_{i}(T) = K_{i} \begin{cases} \exp\left(\frac{T-T_{p,i}}{\tau_{i}}\right), & \text{for } T < T_{p,i}, \\ \exp\left(\frac{T_{p,i}-T}{\xi_{i}\tau_{i}}\right), & \text{for } T > T_{p,i}, \end{cases}$$

Nicola Omodei – Stanford/KIPAC

Interval (s from T_0)	SBPL	SBPL+G	SBPL+PL	SBPL+G+PL	SBPL+SBPL	SBPL+G+SBPL	Gaussian Line	Break at high energy
280.6 - 290.6	413.0	413.1	155.4	143.8	10.9	0.0	Strong	Strong
290.6 - 300.6	156.0	155.9	91.4	73.2	18.9	0.0	Strong	Strong
300.6 - 325.6	161.5	144.4	146.1	118.7	26.5	0.0	Strong	Strong
325.6 - 340.6	137.8	137.9	88.9	89.0	30.8	0.0	Strong	Strong
340.6 - 355.6	203.4	203.5	72.9	69.8	5.6	0.0	Strong	Strong
355.6 - 380.6	186.2	185.9	63.9	61.1	2.7	0.0	Moderate	Strong
380.6 - 435.6	472.6	472.7	173.7	173.9	0.4	0.0	Not required	Strong

Table 6. Decrement of the Bayesian evidence $(\Delta \log Z)$ with respect the best fit model.

11th International Fermi Symposium

- From the LHAASO paper we sample their best fit model (flux and spectral index) to generate spectra during 7 LAT time intervals. We then use 3ML to perform a join likelihood fit.
- We tested several models, using multinest as Bayesian sampler (up to 11 free parameters). We use the Bayesian evidence to discriminate between models (Jeffreys' scale)
- Gaussian line (already discovered by Ravasio et al.):
 - Hard to soft evolution (12 MeV-> 5 MeV)
 - 511 keV e⁺ e⁻ annihilation line shifted by $\Gamma \sim 20$ decelerating to $\Gamma \sim 10$
 - Spine-sheer jet model
 - Off axis motion
 - LLE data increases the significance of the MeV line (analysis performed by S. Locace)

400 GeV event

٠

UTC (s)	Energy (GeV)	R.A. (J2000, ^o)	Dec. (J2000, ^o)	Conv. type.	$\operatorname*{Ang. \; Sep.}_{o}$
2009-11-01 06:21:03.90	117.6	288.9	20.0	Back	0.63
2010-03-10 17:30:57.05	107.1	288.5	19.5	Back	0.31
2015-11-04 12:22:50.10	103.1	287.7	19.2	Front	0.76
$2016\text{-}12\text{-}21 \ 08\text{:}42\text{:}19.47$	268.1	288.5	20.1	Front	0.38
$2017\text{-}06\text{-}30\ 08\text{:}24\text{:}03.47$	113.1	287.4	20.0	Front	0.85
2022-10-09 22:36:17.96	397.7	288.2	19.8	Back	0.02

^{11&}lt;sup>th</sup> International Fermi Symposium

Space Telescope

• We can compute the probability to have 1 event when [N background] are observed using Li & Ma formalism:

N signal	N background	probability
1	5	
1	1	
1	0	

• If the photon comes from the GRB, we can also compute the probability to obtain 1 or more event above 400 GeV (or 360 GeV) from the extrapolation of the spectrum <100GeV:

E threshold	probability
400	
360	

- EM cascade from TeV photons interacting with the EBL:
- Assuming a 30 TeV primary photon, would require a B~2×10⁻¹⁸, not compatible with B>3×10⁻¹⁶ G from non-detection of halos around blazars (Ackermann et al. 2018)

Conclusion

GRB 221009A is the brightest GRB ever detected by the LAT (and by many other instruments)

- Complex event, required a lot of non standard analysis!
- During the BTI: we provided a reliable measurement of the flux
- Many records have been broken... (Fluence, high-energy events, duration)
 - High E_{iso}, especially considering its proximity =>
 - Incredibly rare event (1 in a millennium?) (see also Burns et al. 2023)
- What did we learn?
- Triggering pulse (precursor?):
 - Seen at high energy (uncommon)
 - Very high energy cut off, high-energy precedes low-energy: synchrotron?
- Prompt:
 - Gamma factor ~ 250-500, depending on the environment.
 - "Simultaneous" Prompt and afterglow, with pulses on top of smooth afterglow model
 - Afterglow model well synchronized with LHAASO-WCDA light curve
 - Synchrotron + SSC + gaussian line preferred model
- Afterglow:
 - intriguing 400 GeV event at 33ks after the trigger (although not firmly associated with the burst)
 - LAT+HAWC analysis, see Lucia Tian talk!

http://arxiv.org/abs/2409.04580

Back up slides

11th International Fermi Symposium

- We use some tracker-related quantities (i.e. the average fraction of events with at least a fired strip in the corner planes) to monitor the extra noise as a function of time
- We use simulations to translate this quantity into the flux of low energy photons. At the maximum of P1: ~900 photons/m²/10µs [0.1-30 MeV]

- The Earth limb is a bright source, visible in the LAT data at $\theta_{\text{zenith}} \sim 113$. It offers a calibration source to estimate the trigger and on-board filter efficiency;
- Template fitting (piece-wise linear function + 2 gaussians)
- Estimate the <u>relative efficiency</u> with respect to a reference interval (T0+600.6, T_0 +650.6)

- Highest photons detected by the LAT
 - at 99.3 GeV during the prompt phase, 400 GeV during the afterglow)
- Highest fluence
 - -10^{-2} erg/cm² (>1 order of magnitude brighter than the previous record holder.
- Longest duration
 - -2 davs 10 10 10 0 long long long ÷ short short short long θ > 75° GRB221009A GRB221009A Fluence_{LAT} (0.1-100 GeV) [erg cm⁻²] Fluence_{Lar} (0.1-100 GeV) [erg cm⁻²] short $\theta > 75^{\circ}$ GRB221009A 0 Max Photon Energy (MeV) ¹⁰ ¹⁰ O 10 10-10² 10-1 10-104 105 10-4 10 10-2 10 102 10³ 10-2 104 10-1 10¹ 10⁰ 10² 103 TLAT, 100 (0.1-100 GeV) [s] Fluence (10 keV-1 MeV) [erg cm⁻²] Arrival Time/GBM T95

- Exceptionally fluent, but not quite exceptional in terms of E_{iso}
 - Very close, comparable to high redshift LAT detected GRBs => extremely rare!

Nicola Omodei – Stanford/KIPAC

The BOAT timeline

• Oct.9 2022

- 13:16:60 UT (T₀) Fermi-GBM trigger 221009553 (no prompt GCN notices)
- 14:10:17 UT (T₀+3200s) Swift trigger (<u>GCN</u> after 20min Swift J1913.1+1946)
- 20:54:36 UT Fermi-GBM reports that trigger 221009553 is superbright+long GRB 221009A location consistent with Swift same event!!!
- 21:45:05 UT Fermi-LAT reports HE emission (E_{max}: 8 GeV @766 s post Swift trigger)
- <u>Oct.10, 2022</u>
 - X-shooter/VLT reports redshift z = 0.151
 - Fermi-LAT <u>reports</u> refined analysis (Duration >25ks and E_{max}: 99 GeV @T₀+240s)
 - IceCube reports neutrino UL (no detection)
 - Konus/WIND reports highest GRB fluence in 28 years of operation
- <u>Oct.11, 2022</u>
 - LHAASO <u>reports</u> >500 GeV emission within T_0 +2000s (>100 σ) + 18 TeV photon (10 σ)
 - Swift/XRT reports complex system of bright expanding dust-scattering rings
 - HAWC reports upper limits 8 hours after trigger (See Lucia Tian presenation
- Oct.12, 2022
 - Carpet-2 reports 250 TeV photon-like air shower
- Oct.14, 2022
 - Xia et al. $\underline{\text{report}}$ 400 GeV photon observed by Fermi-LAT at T_0+0.4 d

Nicola Omodei – Stanford/KIPAC

11th International Fermi Symposium

Space Telescope							
Jace relescope							
	f_0	f_0+f_1	$f_0 + f_1 + f_2$	$f_0+f_1+f_2+f_3$			
$K_0 \ [erg \ cm^{-2} \ s^{-1}]$	$(1.8 \pm 0.3) imes 10^{-5}$	$(1.6 \pm 0.3) imes 10^{-5}$	$(1.3 \pm 0.3) imes 10^{-5}$	$(1.1^{+0.4}_{-0.2}) imes 10^{-5}$			
$lpha_1$	3.0~(fix)	3.0~(fix)	$3.0~({\rm fix})$	3.0 (fix)			
$lpha_2$	-1.35 ± 0.03	-1.31 ± 0.04	-1.27 ± 0.05	$-1.25\substack{+0.06\\-0.05}$			
ξ	2(fix)	2(fix)	2(fix)	2(fix)			
$ au ~ [{ m s}]$	20 ± 2	18^{+3}_{-2}	17^{+4}_{-3}	15^{+4}_{-3}			
T_{on} [s]	213 ± 1	214 ± 1	215 ± 2	215 ± 2			
$K_1 \ [erg \ cm^{-2} \ s^{-1}]$	-	$(1.7^{+1}_{-0.6}) imes 10^{-5}$	$(1.7^{+0.6}_{-0.5}) imes 10^{-5}$	$(1.7^{+0.7}_{-0.4}) imes 10^{-5}$			
$T_{p,1}$ [s]	-	330 ± 10.0	333 ± 2	333 ± 2			
$ au_1$ [s]	-	22^{+10}_{-8}	25^{+9}_{-6}	25^{+8}_{-5}			
ξ_1	-	$1.1^{+1}_{-0.6}$	1.1 ± 0.4	$1.0^{+0.4}_{-0.3}$			
$K_2 \ [erg \ cm^{-2} \ s^{-1}]$	-	-	$(1.2^{+0.7}_{-0.4}) imes 10^{-4}$	$(1.2^{+0.6}_{-0.4}) imes 10^{-4}$			
$\mathrm{T}_{\mathrm{p,2}}~\mathrm{[s]}$	-	-	247.4 ± 0.9	247.3 ± 0.9			
$ au_2$ [s]	-	-	4^{+2}_{-1}	4^{+2}_{-1}			
ξ_2	-	-	$0.5\substack{+0.3\\-0.2}$	$0.5\substack{+0.3\\-0.2}$			
$ m K_3 \ [erg \ cm^{-2} \ s^{-1}]$	-	-	-	$(1.1^{+4}_{-0.9}) imes 10^{-5}$			
$T_{p,3}$ [s]	-	-	-	263^{+3}_{-2}			
$ au_3$ [s]	-	-	-	$0.6^{+0.2}_{-0.1}$			
ξ3	-	-	-	3^{+3}_{-1}			
BIC	69.2	64.9	62.6	71.2			
Δ_{BIC}	0	-4.3	-2.3	6.3			
T_{p}	21^{+3}_{-2}	23 ± 4	18^{+4}_{-3}	17 ± 4			
Γ (wind)	240 ± 7	237 ± 10	250 ± 10	$250.0^{+20.0}_{-10.0}$			
Γ (ISM)	490 ± 20	480 ± 30	520 ± 40	$530.0\substack{+50.0\\-40.0}$			
Fluence $[erg \ cm^{-2}]$	$(1.4 \pm 0.1) \times 10^{-3}$	$(2.2 \pm 0.3) imes 10^{-3}$	$(2.6 \pm 0.4) imes 10^{-3}$	$(2.7 \pm 0.4) imes 10^{-3}$			
$E_{iso} [erg]$	$(9 \pm 0.8) imes 10^{52}$	$(1 \pm 0.2) imes 10^{53}$	$(2 \pm 0.3) imes 10^{53}$	$(2 \pm 0.3) imes 10^{53}$			

Measurement of the bulk Lorentz factor

 From the peak of the FS light curve we can estimate the bull Lorentz factor:

$$\Gamma = \left[\left(\frac{(17-4s)}{16\pi(4-s)} \right) \left(\frac{E_K}{n_0 m_{\rm p} c^{5-s}} \right) \right]^{\frac{1}{8-2s}} \left(\frac{T_{\rm p}}{1+z} \right)^{-\frac{3-s}{8-2s}}$$

- $\Gamma \sim 250$ (wind, s = 2), $\Gamma \sim 520$ (ISM, s = 0)
- If we assume the derivation from Sari Pira 99 (same as in the LHAASO paper) we obtain $\Gamma \sim 440(ISM, s = 0)$ as in their paper.
- Integrating the light curve, we can also estimate the energy released:
- $E_{iso} \sim 2 \times 10^{53} erg$