Unveiling Extragalactic Magnetar Giant Flares with Fermi GBM: A Comparative Study of GRB 231115A and GRB 180128A

Aaron Trigg*

M. Baring, N. Bhat, E. Burns, M. Briggs, N. Christiansen, S. Dalessi, N. Di Kalla, D. Frederiks, A. Goldstein, D. Huppenkothen, C. Kouveliotou, M. Negro, B. O'Conner, N. Omodei, A. Ridnaia, O. Roberts, L. Scotton, D. Svinkin, P. Veres, Z. Wadiasingh, G. Younes, Rachel Stewart, Alex van Kooten, L. Hu, D. Gruen, A. Riffeser, R. Zoeller, A. Palmese, C. Kouveliotou

*atrigg2@lsu.edu

The Plan

- Magnetars and magnetar giant flares (MGFs)
- Galactic vs. extragalactic MGFs
- GRB 200415A (Next talk by Dr. Matthew Baring)
- GRB 180128A and GRB 231115A
 - Temporal and spectral analyses
 - Follow-up observations
 - X-ray search

Magnetars

- Young neutron stars: ~10⁴ yrs
- Extreme magnetic fields: >10¹³ G
- Rotational periods: 2-12 s
- ~30 known objects
- Quiescent X-ray emission
- Host to wide variety of high energy transient activity

Magnetar Giant Flares (MGFs)

- Prompt (~0.1 s) emission
- $L_{\text{peak}} \sim 10^{44} 10^{48} \text{ erg s}^{-1}$
- As of 2020, 7 identified:
 3 Galactic, 4 extragalactic
- Inferred volumetric rate:

 $R_{MGF} = 3.8^{+4.0}_{-3.1} \times 10^{5} \text{Gpc}^{-3} \text{ yr}^{-1}$ (Burns et al. 2021)

Galactic vs. Extragalactic MGFs

Galactic MGFs:

- Prompt (ms) emission
- Followed by periodic tail

Extragalactic MGFs:

- Current instrumentation has not sensitive to periodic tail emission at these distances
- Many could be masquerading as short GRBs
- Identification requires spatial alignment with nearby star forming galaxies

Credit: NASA Goddard/S. Wiessinger

Galactic vs. Extragalactic MGFs

Galactic MGFs:

- Prompt (ms) emission
- Followed by periodic tail

Extragalactic MGFs:

- Current instrumentation has not sensitive to periodic tail emission at these distances
- Many could be masquerading as short GRBs
- Identification requires spatial alignment with nearby star forming galaxies

Credit: NASA Goddard/S. Wiessinger

Two More MGFs Seen by Fermi

- Localized to NGC 253
- Identified in archival Fermi GBM data search (Trigg et al., 2024)
- Localized to M82
 Promptly identified as an MGF by INTEGRAL (Mereghetti et al., 2023)

Each marks the second occurrence of such an event within its respective galaxy or galaxy group

Time-Integrated Spectral Analysis

Spectral Evolution: Relativistic "Lighthouse"

- Soft-to-hard-to-soft spectral evolution in time-resolved analyses
- This behavior is consistent with a comptonized relativistic wind origin for the prompt emission
- Both consistent with underlying model in Roberts et al. 2021

Isotropic Luminosity-Peak Energy Correlation

- Fixed interval time binning
 - $L_{\rm iso} \propto E_{\rm p}^2$ Strong signature of relativistic wind (Doppler boosting)
 - Agnostic binning (flux)

- Bayesian blocks binning
 - $L_{\rm iso} \propto E_{\rm p}^2$ relation not recovered
 - $L_{\rm iso} \propto E_{\rm p}^4$ for shorter binning (intensity)

Liso ∝

10³

Liso

Liso

 E_{p} (keV)

Follow-up Observations

<u>GRB 180128A</u>

- Relied on archival data from other observatories
 - No gravitational wave signal
 - No contemporaneous radio signal
 - No supernova around time of burst

<u>GRB 231115A</u>

- Prompt localization and alerts allowed for follow-up by the larger community
 - No gravitational wave signal
 - No contemporaneous radio signal
 - No optical signals
 - Optical follow-up with telescope at Wendelstein Observatory, Germany.
 - No X-ray signal

GRB 231115A – MGF Tail Detection

- Simulated MGF tail light curve with XRT (blue) and NICER (red)
 - assumes properties observed in the SGR 1806–20 MGF tail
 - Scaling it to the M82 distance of 3.5 Mpc.
 - The inset shows the modulation that is embedded in the light curve.
- Pulsation detection in XRT and NICER as a function of MGF distance.
- Dot-dashed and dotted lines show 4.5 σ and 3σ detection significance (single-trial), respectively.
- The vertical dashed line is the M82 distance of 3.5 Mpc.

Conclusion

- 3 extragalactic MGFs observed by Fermi GBM
- All consistent with expectations of MGFs
- Support model outlined in Roberts et al. 2021
- Rapid X-ray follow-up is crucial for detecting
 - the fading signals from periodic tail