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Outline
• Problem overview - Motivation

• Summary, future, importance

• Modeling the thermal NICER X-ray light curves
Constraints: Multipolar magnetic fields, Mass, Radius (Equation of State)

• Revolutionizing the parameter inference by ML techniques
From unfeasible to feasible



OverviewThermal Non-thermal



NICER results

𝑀 = 1.34𝑀⨀	
𝑅 = 12.71𝑘𝑚
𝜁 = 53.85∘	

𝑀 = 1.49𝑀⨀	
𝑅 = 13.64𝑘𝑚
𝜁 = 47.38∘	

Riley et al. (2019) Miller et al. (2019)

~20 parameters

2 hotspots
same temperatures

2 hotspots
same temperatures

+
3 hotspots

Thermal X-ray LC    Bogdanov et al. (2019)

phase

J0030+0451

Strong evidence for multipolar 
magnetic field

Hot spots are based on pre-
selected shape patterns 

unrelated to magnetic field 
structures



Non-Dipolar Fields
Offset Dipole + Offset Quadrupole

11 parameters

𝜴 D Qm=0

Static Vacuum Field (SVF)



Non-Dipolar Fields
Offset Dipole + Offset Quadrupole

11 parameters

SVF

Central dipole ⟶ offset dipole + offset quadrupole



GR Ray Tracing

NASA video

We use Kerr metric, 
but Schwarzschild metric would be adequate
for PSR J0030 spin rate

𝑁 = 2.5×10!

Assumptions
𝑀⋆ , 𝑟⋆, ζ from Miller et al. 2019 and Riley et al. 2019

Mathematica, C++, Parallel, Pleiades NASA supercluster

GIKS CODE

Kalapotharakos et al. 2021, see Psaltis & Johannsen 2012, Lechien et al. 2024 (in prep.)



MCMC exploration

We developed a parallel 
MCMC code implementing the 

stretch move (Goodman & 
Weare 2010, Foreman-Mackey 
et al. 2013) ensemble method.
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Fermi data

Model

MCMC 
Realistic FF/Dissipative Simulations 

FF, Riley et al., 2019 fixed parameters11 parameters

8 parameters

6 parameters

Kalapotharakos et al. (2021)



Revolutionizing the parameter inference through 
Machine Learning Approaches

Neural Networks



Revolutionizing the parameter inference through 
Machine Learning Approaches

Neural Networks

Greg Olmschenk

Our network is a ResNet-like structure 
but transposed and 1D. The main 
trainable layers are transposed 
convolutions which connect adjacent 
features in the phase dimension. 
Residual skip connections help enable 
training with a deep number of layers.



Revolutionizing the parameter inference through 
Machine Learning Approaches

Neural Networks
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Emily Broadbent



Revolutionizing the parameter inference through 
Machine Learning Approaches

Neural Networks



Neural Networks

Olmschenk et al. 2024 (in prep)

Physically based
Neural Network
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Neural Networks
Physically Based
Neural Network



Neural Networks
Effectiveness
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Practically, taking the 
advantage of rotation 

properties, we calculate 64 
times less data. 



Neural Networks
Parameter inference using a NN



Neural Networks
Parameter inference using a NN
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Neural Networks
Parameter inference using a NN

Par*+ − Par,, ≤
σ
2

Speed up for the SVF is 
astonishing exceeding 

a factor > 400



Statistical Tests

Wasserstein Difference 𝑊 = %
#

𝐹$ − 𝐹% 𝑑𝑥

Kolmogorov Smirnov 𝐾𝑆 = sup
&

𝐹$ − 𝐹%

Jensen-Shannon Divergence 𝐽𝑆𝐷 =
1
2𝐾𝐿𝐷 𝐹$||𝐹% +

1
2𝐾𝐿𝐷 𝐹%||𝐹$

Kullback-Leibler Divergence 𝐾𝐿𝐷 =+
-

𝐹. log
𝐹.
𝐹!

𝐹' = NN	distribution
𝐹( = Physical	distribution



Neural Networks

We have already expanded the parameter 
space considering free stellar mass and 

radii using again NNs

Thibault Lechien

• Degenerate solutions that fit the NICER X-ray light curve
• Need a way to further constrain the parameters



Neural Networks
Vacuum to Force Free

Training NNs from scratch using FF light curves is too expensive.
However, using the NN trained on a large dataset of vacuum model data and fine-tuning it with a smaller 
dataset of force-free model data shows promising results.

Lechien et al. (in prep.)



Neural Networks
Vacuum to Force Free

Vacuum NN FF NN

Lechien et al. (in prep.)

Prelim
inary 

results

Training NNs from scratch using FF light curves is too expensive.
However, using the NN trained on a large dataset of vacuum model data and fine-tuning it with a smaller 
dataset of force-free model data shows promising results.

Ultranest runs 



Neural Networks
Requesting the field structure to fit the 

Fermi γ-ray light curve eliminates 
considerably the number of viable 

solutions

We have already 
started producing 

training datasets of 
model gamma-ray 

light curves to train 
NNs that emulate 
the model gamma-

ray light curves.

A sample of 420 
cases from the 

posterior distribution

A metric that considers the 
phase difference of the peaks and 

the peak amplitudes

Prelim
inary 

results



Neural Networks
Vacuum Retarded Multipolar Components

So far, vacuum means static vacuum with offsets.
We have started implementing vacuum retarded multipolar components, which are also analytic.

Kundu et al. (in prep.)

Petri 2012, 2015
The advantage with the vacuum 

retarded fields is that, besides their 
analytic nature, they are closer to the 

FF field structures.

So, the vacuum retarded fields will 
provide advanced NN initial 
conditions for the fine-tuning 

training of the FF NNs



Hot Spots 
Polar Caps vs. Current Structures

• Temperature distribution
• Pair production

Rocket effect



Summary, Future, Importance
• NICER thermal X-ray light curves of MSPs can provide meaningful constraints not 

only on masses & radii, i.e., EoS, but also field structures.

• A proper and self-consistent treatment requires the consideration of hot spots in 
agreement with realistic field structures.

• Even though the existing data incorporate the necessary information, the actual 
physical modeling is computationally demanding making the study unfeasible.

• Machine learning techniques revolutionize the parameter inference making the global 
study feasible.

• Incorporating the Fermi-LAT data and gamma-ray models into this study (doable with 
ML) will provide more robust and stricter constraints.

Broader scientific impact: Radio emission region, pair production efficiency in MSPs, generation 
and evolution of magnetic fields

Next steps: Incorporate energy dependent light curves, deviations from sphericity, explore more 
efficient NN structures & loss functions, explore normalizing flows & generative adversarial 
networks (GANs), hot-spots not only on polar caps but also on current structures, magnetars





FFE Solutions

45a = °

min

max

( )-

( )+

J ,Br

Kalapotharakos & Contopoulos 2009; Kalapotharakos et al. 2012



GR Ray Tracing
We developed a GR-code (GIKS) that follows the photon trajectories in the full Kerr-metric

We use Kerr metric, 
but Schwarzschild metric would be adequate
for PSR J0030 spin rate

𝑁 = 2.5×10'

Assumptions
𝑀⋆, 𝑟⋆, ζ from Miller et al. 2019 and Riley et al. 2019

Mathematica, C++, Parallel, Pleiades NASA supercluster

Kalapotharakos et al. 2021, see Psaltis & Johannsen 2012

Lechien et al. 2024 (in prep.)





FutureEnergy resolved X-ray spectra

X-ray, γ-ray, & radio data
Advanced vacuum (Petri) & FF fields

Advanced realistic 
atmosphere models

ML techniques

Temperature distributions

Superior parameter inferencesSelf-consistent 𝑀∗, 𝑟∗, and B-field determination will 
shift the median values and reduce uncertainties

Magnetars



Atmosphere model
The reconstruction of X-ray LCs (i.e., the intensity at each phase) requires the 
incorporation of the Doppler boosting and an atmosphere model.

Miller et al. 2019 and Riley et al. 2019 
used the same atmosphere model 
(i.e., pure 𝐻/) even though they used 
slightly different energy channels.

Atmosphere Model
𝐈 = 𝓕(𝝑𝒛, 𝑬)
𝐈 ∝ 𝐜𝐨𝐬𝒏(𝝑𝒛)

Assuming the Riley et 
al. HSs, we were able to 
reproduce the X-ray LC 
for 𝑛 ≈ 1

Assuming the Miller et 
al. HSs, we were able to 
reproduce the X-ray LC 
for 𝑛 ≈ 0.65



Neural Networks
Requesting the field structure to fit the 

Fermi γ-ray light curve eliminates 
thousands of solutions down to ≈ 2

We have already 
started producing 

training datasets of 
model gamma-ray 

light curves to train 
NNs that emulate 
the model gamma-

ray light curves.



Atmosphere model

Atmosphere Model
𝐈 = 𝓕(𝝑𝒛, 𝑬)
𝐈 ∝ 𝐜𝐨𝐬𝒏(𝝑𝒛)

For the Riley et al. HSs, 
we were able to 
reproduce the X-ray LC 
for 𝑛 ≈ 1

For the Miller et al. 
HSs, we were able to 
reproduce the X-ray LC 
for 𝑛 ≈ 0.65

𝜁 = 53.85∘

Projection on the observer plane


