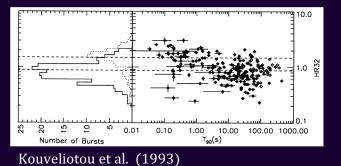
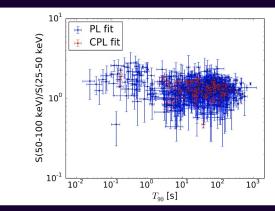
A Novel GRB Progenitor Classifier Based on Fermi-GBM Prompt Emission Properties

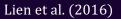
Pi Nuessle^{1,2}, Judith Racusin¹, and Nick White² ¹NASA Goddard Space Flight Center ²The George Washington University

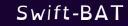
"GRB Progenitor Classification from Gamma-Ray Burst Prompt and Afterglow Observations", 2024. doi:10.48550/arXiv.2407.08857 (in press)


There are two widely-accepted GRB progenitors generally attributed to two observational classes

The massive stellar collapsar $\int e^{i t t t} e^{i t t t} e^{i t t t} e^{i t$


Many ways to observe the different classes


Collapsars	Mergers
mid-Z elements created through nuclear fusion and photodisintegration in Type lbc supernovae	high-Z elements created via r-process nucleosynthesis associated with kilonovae
dense environments produced by the shedding of the star's outer layer	less dense environments–tend to move out of their stellar nurseries
very young stars in star-forming regions	older objects typically in the outskirts of their older, redder host galaxies
tend towards softer spectra	harder spectra in general
most long (>5 seconds) duration	most short (<5 seconds) duration
for GBM, use 4.2 s from GBM GRB Catalog (von Kienlin et al., 2020)	

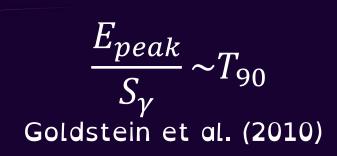

Hardness Ratio and Duration Typically Used to Discriminate

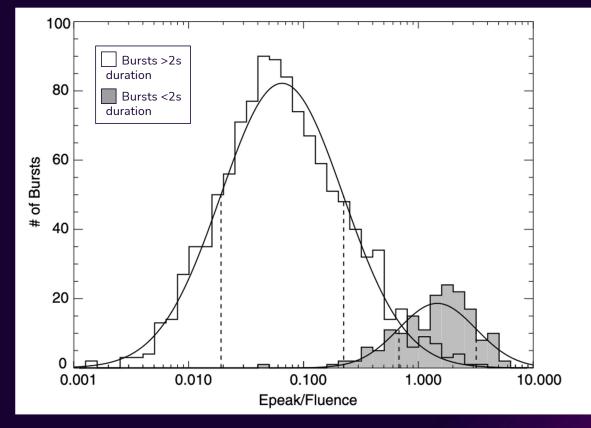


Bursts Outside this Paradigm

Long Mergers (KN detected)

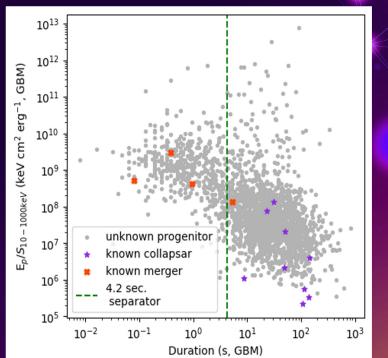
- 1. GRB 230307A
 - T₉₀=35s, KN detected
 - Bulla et al. 2023
- 2. GRB 211211A
 - T₉₀=34s, KN detected
 - Troja et al. 2022
- з. GRB 111005A
 - T₉₀=26 s, KN detected
 - Wang et al. 2017
- 4. GRB 060614
 - T_{90} =102s, KN detected
 - Yang et al. 2015


Short Collapsars (SN detected)

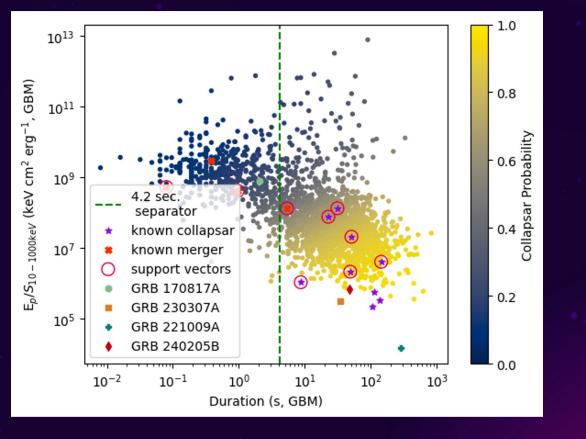

- 1. GRB 200826A
 - T₉₀=1.1s, SN detected
 - Ahumada et al. 2021

Unclear Progenitor (Both KN and SN features)

- 1. GRB 210704A
 - T₉₀=4.7s, optical excess, long lag, soft spectrum, and
 - possible old galaxy localization
 - Becerra et al. 2023


Known Correlations in the Context of Progenitor Outliers

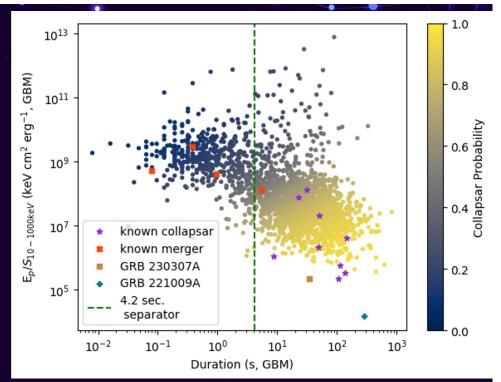
Sample Selection


- Every Fermi-GBM GRB through 05/2023 (von Kienlin et al., 2020) (3527 bursts)
 - Eliminated any without peak energy, e.g. best fit
 by power law (2310 bursts left)
- Known progenitors (63 bursts)
 - mergers (21 bursts)
 - correlated kilonova (9 bursts)
 - likely kilonova (3 bursts)
 - in the outskirts of their host galaxies via Fong et al. (2022) (8 bursts)
 - low spectral lag (Jiang et al., 2023, 1 burst)
 collapsars (42 bursts)
 - correlated supernova mostly from Dainotti et al. (2022), GRBs 200826A, 211023A, and 150210A from individual papers

Nuessle et al. 2024, our sample

Classification Method

- Supervised Machine
 Learning
 - Support Vector Machine (SVM)
 - trained on known progenitors
 - minimizes training set
 - creates dividing hyperplane
- uniform response over sizes of training data
- Platt Scaling makes it gives you Bayesian probability

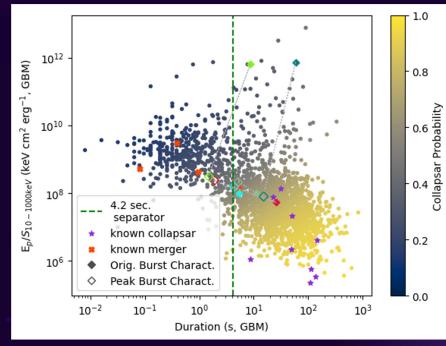

Testing for selection effects

- prompt fluence dependence
- redshift-dependence
- simulated distance dependence
- afterglow plateau fluence dependence
- bootstrap analysis of the number of progenitors in the training sample
- tested if some ambiguous cases could be due to a short spike with extended emission

Correlation persisted, and it appeared to discriminate on classes-more details in paper

Summary

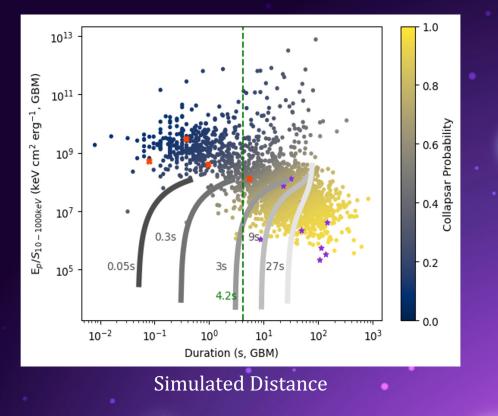
- new classification method
 - based on standard prompt emission properties (in GRB catalogs)
 - probabilistic
 - has limitations-misclassifies the known merger GRB 230307A
- related studies using different methods: Dimple et al. (2023, 2024), Negro et al. (2024), and Zhu et al. (2024)
- our classifier is on GitHub: <u>https://github.com/PiNuessle/Novel_SVM_GRB_</u> <u>Progenitor_Classifier</u>

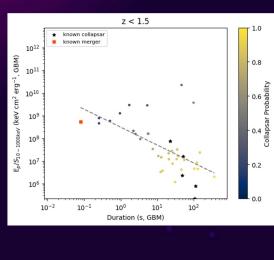

Backup

Several Possible Contributors to Overlap

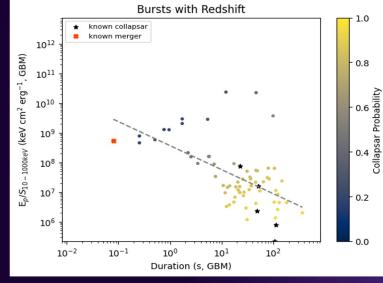
- Some Wolf-Rayet stars form in binary or more systems and may be triggered through collision rather than collapse
 - We still refer to these as collapsars
- At least some binaries may contain one non-neutron star massive companion at the time of collision
 - hypothesized WD channel
 - Dense environments
- Selection bias for observed length and progenitor of GRBs

Analysis of BOAT and SBOAT spectra


- Both GRBs have issues with their fitted spectra--221009A because it was so bright, 230307A because it was so long
 - 221009A: Lesage et al. (2023), Table 1, peak energy in stage IVc, about mean time, (300 s) about mean value (1400 keV)
 - The duration and fluence were taken as the values calculated in this paper
 - 230307A: Levan et al (2023), we took the peak energy at 20s,
 - (682.4 keV) as it was halfway through the measured interval
 - Again, authors calculated fluence and duration



Subtracting "Extended Emission"


- EE selected by eye
- removal did not improve classification
- changed classification in one case

- All simulated bursts have same energetics
- Each grey line same duration
- explained data spread, not classification

- Redshift subsample statistically cannot be rejected as representing full sample
- All three graphs statistically similar, confidence level 0.01 and effect size 0.5
- All redshift progenitors at low redshift

- 0.8

Probability

- 0.4 Collapsar

0.2

z ≥ 1.5

known collapsar

1012

1011

້ອ 10¹⁰ ເ

108

107

106

 10^{-2}

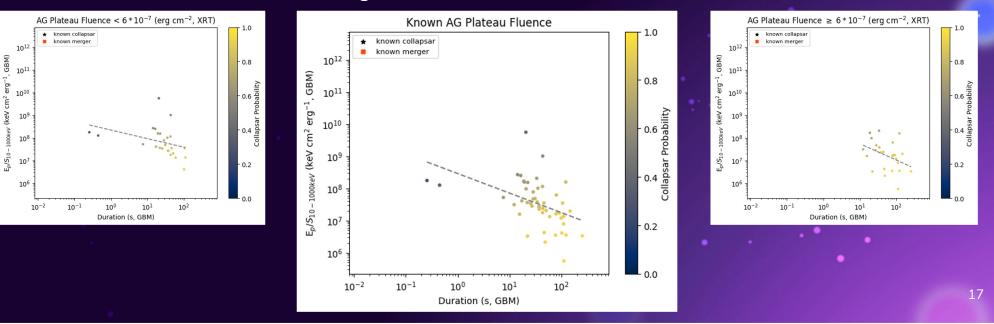
erg⁻¹, GBM)

3 10⁹

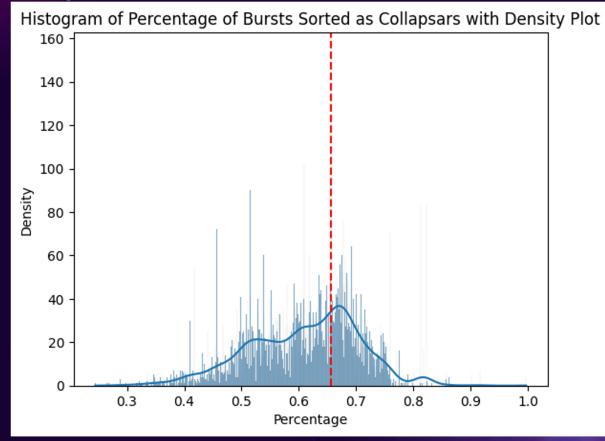
 E_p/S_{10}

known merger

 10^{-1}


100

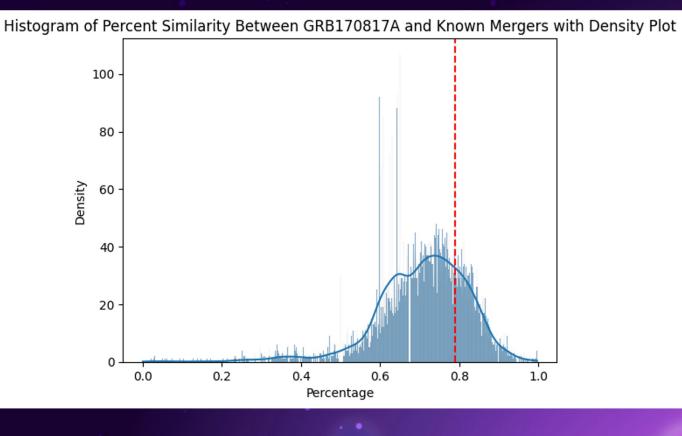
Duration (s, GBM)


10¹

10²

- Afterglow subsample rejected as representative of whole, α =0.01, β =0.5
- Bright and dim statistically different
- No progenitors to compare with

Bootstrapping our SVM model to check for dependence on training set size

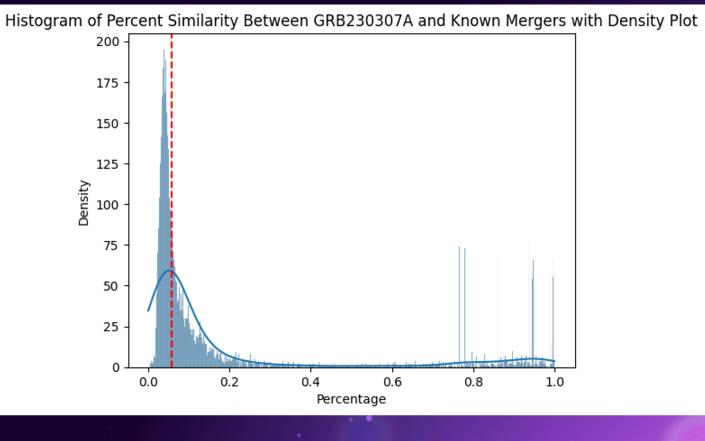


High variance
model likely missed some collapsars

18

Bootstrapping our SVM model to check for dependence on training set size

10⁴ models, original was on the high end likely need more mergers



Bootstrapping our SVM model to check for or dependence on training set size

More likely a

problem with

physical model

20