Stacking Search for IceCube Neutrinos from Fermi-LAT Active Galactic Nuclei

Sam Hori, Justin Vandenbroucke, Abhishek Desai For the IceCube Collaboration

11th Fermi Symposium -- 9/11/2024

Photo Credit:Yuya Makino, IceCube/NSF

IceCube Neutrino Observatory

- Cubic kilometer of instrumented ice
- Spacing optimized for TeV-PeV neutrinos
- Sensitive to all flavors of neutrino
 - Muon neutrino charged current interactions ("tracks") have best angular resolution but large cosmic ray background in southern sky

Active Galactic Nuclei

- Supermassive black hole accreting matter
- Blazars dominate sample in gamma rays
- Divide AGN into 3 classes for this analysis
 - BL Lacertae (BLL)
 - Flat Spectrum Radio Quasar (FSRQ)
 - Non-blazar AGN

Neutrino Emission by AGN

• TXS 0506+056

- 2017 gamma-ray flare in coincidence with high energy neutrino.
- Follow-up IceCube analysis found previous neutrino flaring period
- One of the brightest gamma-ray blazars
- NGC 1068
 - Seyfert type II found as a timeintegrated neutrino source
 - GeV gamma-rays believed to originate from starburst region

R. Abbasi et al. Science (2022)

Previous IceCube Limits on Fermi-LAT AGN

- Population studies are more sensitive to neutrino emission from a source class than individual source analyses
- Previous IceCube studies placed limits on neutrino emission from Fermi-LAT AGN (2LAC, 3FHL, 1FLE analyses)
 - 2LAC analysis used 3 years of IceCube data with 862 blazars
 - 3FHL analyzed 1301 hard blazars with 8 years of data
 - 1FLE analyzed 137 soft blazars with 10 years of data
 - Limits reject case where the gamma-ray blazars emit entire diffuse IceCube flux (under tested models)

Stacking Test

• Test the hypothesis that all objects in sample emit neutrinos with the same spectrum with relative fluxes given by a weighting scheme

$$S_{i}^{stacked}(x_{i},\sigma_{i},E_{i},\gamma) = \frac{\sum_{k=1}^{M} w_{k}R_{k}(\delta_{k},\gamma) * S_{i}^{k}(x_{i},x_{S_{k}},\sigma_{i},E_{i},\gamma)}{\sum_{k=1}^{M} w_{k}R_{k}(\delta_{k},\gamma)}$$
$$\Sigma(n_{s},\gamma) = \prod_{i}^{N} \left(\frac{n_{s}}{N} * S_{i}^{stacked}(x_{i},\sigma_{i},E_{i},\gamma)\right) + \left(\left(1-\frac{n_{s}}{N}\right) * B_{i}(x_{i},\sigma_{i},E_{i})\right)$$

- N neutrinos (indexed with i), each with energy E_i , location $x_i = (\alpha_i, \delta_i)$, angular uncertainty σ_i
- M sources (indexed with k), each with weight w^k , location x_{S_k} and detector response R
- Overall normalization of n_s (number of detected neutrinos) with recovered power law spectrum of γ

L

IceCube Dataset

- IceCube dataset "Northern Tracks"
 - Only in declinations between -3-81 degrees
 - Improved PSF modeling("KDEs")
 - 10 year version used in the NGC 1068 result
 - Additional three years of data (13 years) used in this work

 $\sin(\delta)$

10 year Northern Tracks sensitivity compared to a previous 10 year point source analysis (results in about 20-30% improvement) R. Abbasi et al. Science (2022)

Hypotheses Tested

- 3 source classes
 - FSRQ
 - BL Lacs
 - Non-blazar AGN
- 2 tested weighting hypotheses
 - $L_{\nu} \propto L_{\gamma}$
 - $L_{\nu} \propto L_{\gamma}^2$
 - Motivated by models where neutrino flux scales with jet power and target field density (and where both correlate with gamma-ray flux) (e.g. Tavecchio & Ghisellini 2015)
 - Requires redshift
 - Using number flux between 1 GeV-100 GeV in the source frame corrected for extragalactic background light absorption to compute L_{γ}

Fermi-LAT Catalog

- Using Fermi 4FGL-DR4 and 4LAC-DR3
- Require sources have redshift
- Require sources between -3 and 81 degrees declination (for IceCube dataset)

Stacking Sensitivities

- Under model $L_{\nu} \propto L_{\gamma}$, median upper limit under the null hypothesis
- Previous ULs not exactly comparable with this work (power law cutoff below 10 TeV and different catalog)
- No completeness corrections

Binomial Test

- Model-independent population test analyzing all sources passing redshift and declination cuts
- Calculate individual p-values and look for subthreshold population $TS_{binomial} = min_k \sum_{m=k}^{N} {N \choose m} * p_k^m * (1 - p_k)^{N-m}$
- Probability that more than k out of N binomial trials would pass if the binomial probability was the kth largest p-val p_k
- Sensitive to scenarios outside of tested models (unknown populations, unknown relationship between gamma rays and neutrinos)

Binomial Test Sensitivities

- N randomly selected neutrino sources in sample,
 - Each with a power law spectrum with $\gamma = 2.0$
 - Same expected value of the number of neutrinos for each source
- Sensitive to reasonably sized subset of subthreshold sources

Sam Hori--IceCube Stacking Search of Fermi AGN

Summary

- Some previous evidence that gamma-ray bright AGN are sources of IceCube neutrinos
- Significant improvement over previous IceCube gamma-ray AGN population searches
 - Improvements in the quantity of data and analysis methods
- A more model-independent test (binomial test) than previous IceCube analyses
 - Sensitive to any large subset of subthreshold neutrino sources
- Working toward unblinding soon!

Backup Slides

Stacking Test

$$\begin{split} S_i^k \big(x_i, x_{S_k}, \sigma_i, E_i, \gamma \big) &= S_{i,spatial}^k \left(x_i, x_{S_k}, \sigma_i \right)^* S_{i,energy}^k (E_i, \gamma) \\ B_i \left(x_i, \sigma_i, E_i \right) &= B_{i,spatial} (x_i, \sigma_i)^* B_{i,energy} \left(E_i \right) \end{split}$$

$$S_{i}^{stacked}(x_{i},\sigma_{i},E_{i},\gamma) = \frac{\sum_{k=1}^{M} w^{k} R^{k}(\delta_{k},\gamma) * S_{i}^{k}(x_{i},x_{S_{k}},\sigma_{i},E_{i},\gamma)}{\sum_{k=1}^{M} w^{k} R^{k}(\delta_{k},\gamma)}$$
$$\mathcal{L}(n_{s},\gamma) = \prod_{i}^{N} \left(\frac{n_{s}}{N} * S_{i,stacked}(x_{i},\sigma_{i},E_{i},\gamma)\right) + \left(\left(1-\frac{n_{s}}{N}\right) * B_{i}(x_{i},\sigma_{i},E_{i})\right)$$
$$TS = 2 * \ln\left(\frac{\min_{n_{s},\gamma} \mathcal{L}(n_{s},\gamma)}{\mathcal{L}(n_{s}=0)}\right)$$

- N neutrinos (indexed with i), each with energy E_i , location $x_i = (\alpha_i, \delta_k)$, angular uncertainty σ_i
- M sources (indexed with k), each with weight w^k , location x_{S_k} and detector response R
- Overall normalization of n_s (number of detected neutrinos) with recovered power law spectrum of γ 9/11/2024

TXS 0506+056

- 2017 neutrino in coincidence with blazar flare
- IceCube follow-up found evidence of 2014 neutrino flare

<u>The IceCube Collaboration</u> *et al.*, Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A.*Science* **361**, eaat1378(2018). DOI: <u>10.1126/science.aat1378</u>

151(2018).DOI:<u>10.1126/science.aat2890</u>

Updated TXS 0506+056 Analysis

- Updated dataset ("Northern Tracks" with new PSF parametrization)
- Lowered best fit for 2014 flare neutrino flux

Luszczak, William. "TXS 0506+ 056 with Updated IceCube Data." *arXiv preprint arXiv:2307.14559* (2023).

NGC 1068

- Seyfert and starburst galaxy
- Gamma-ray emission Likely associated with starburst
- First known nontransient source of neutrinos
- Neutrino flux exceeds prediction from gamma-ray flux

IceCube Collaboration "Evidence for neutrino emission from the nearby active galaxy NGC 1068." *Science* 378.6619 (2022): 538-543.

Seyfert

- NGC 1068 detected at over 4σ
- NGC 4151 at 2.9 σ

IceCube Search for Neutrino Emission from X-ray Bright Seyfert Galaxies https://arxiv.org/abs/2406.07601

Northern Track Properties

IceCube Collaboration "Evidence for neutrino emission from the nearby active galaxy NGC 1068." *Science* 378.6619 (2022): 538-543.

9/11/2024

Sam Hori--IceCube Stacking Search of Fermi AGN

LAT Population Analyses

Analysis	Source Catalog	Total Number of Blazars	Flux Weight Energy Range	
			(GeV)	
Aartsen et al. (2017b)	2LAC	862	0.1 - 100	
Huber (2019)	3FHL	745		
Abbasi (2022)	1FLE	137	0.03 - 0.1	

- Tested Weights
 - 2LAC and 1FLE: gamma-ray proportion and equal
 - 3FHL: equal weights, but with decile subgroups constructed based on gamma-ray flux
- Tested subclasses:
 - 2LAC: All blazars, FSRQ, LSP-BLL, ISP/HSP
 - 1FLE: All blazars
 - 3FHL: All Blazar, FSRQ , HSP BLL, LSP/IBP BLL,

Brightest Objects

FSRQs		BL Lacs		Non-Blazar AGNs	
Fermi Name	Associated Source	Fermi Name	Associated Source	Fermi Name	Associated Source
4FGL J2253.9+1609	3C 454.3	4FGL J2202.7+4216	BL Lac	4FGL J0319.8+4130	NGC 1275
4FGL J2232.6+1143	CTA 102	4FGL J1104.4+3812	Mkn 421	4FGL J0948.9+0022	PMN J0948+0022
4FGL J1504.4+1029	PKS 1502+106	4FGL J0721.9+7120	S5 0716+71	4FGL J1230.8+1223	M 87
4FGL J1159.5+2914	Ton 599	4FGL J1555.7+1111	PG 1553+113	4FGL J0850.0+5108	SBS 0846+513
4FGL J0108.6+0134	4C +01.02	4FGL J0222.6+4302	3C 66A	4FGL J1829.5+4845	3C 380
4FGL J1224.9+2122	4C +21.35	4FGL J0521.7+2112	TXS 0518+211	4FGL J1505.0+0326	PKS 1502+036
4FGL J0237.8+2848	4C +28.07	4FGL J1427.0+2348	PKS 1424+240	4FGL J0308.4+0407	NGC 1218
4FGL J1635.2+3808	4C +38.41	4FGL J1653.8+3945	Mkn 501	4FGL J0433.0+0522	3C 120
4FGL J0957.6+5523	4C +55.17	4FGL J0238.6+1637	PKS 0235+164	4FGL J0324.8+3412	1H 0323+342
4FGL J1048.4+7143	S5 1044+71	4FGL J1217.9+3007	B2 1215+30	4FGL J0418.2+3807	3C 111

9/11/2024

Sam Hori--IceCube Stacking Search of Fermi AGN

Class

rdg

nlsy1

rdg

nlsy1

CSS

nlsy1

rdg

rdg

nlsy1

rdg

4LAC-DR3

- Derived from 12 years of Fermi-LAT gamma-rays above 50 MeV
- Fermi-LAT 2LAC catalog constructed with 2 years with 1017 total gamma rat sources (360 FSRQ/423 BLL)

