

Search for Astrophysical Neutrinos from the 4FGL Galactic Plane Sources with the Pion Bump Signature

Mehr Un Nisa, Alejandra Granados, Rishi Babu Michigan State University

Galactic Diffuse Neutrino Sky

IceCube Collaboration, "Observation of high-energy neutrinos from the Galactic plane", vol. 380, no. 6652, pp. 1338–1343, 2023

- Observation of a diffuse neutrino flux concentrated along the Galactic Plane (see Steve Sclafani's talk Parallel 11A)
- π^0 spatial model : spatial template that incorporates the MeV to GeV π^0 component, inferred from the gamma-ray emission.
- Where are the galactic sources of neutrinos?
- What is the exact nature of correlations between gamma rays and neutrinos?

Galactic Diffuse Neutrino Sky

Unresolved sources?

IceCube Collaboration, "Observation of high-energy neutrinos from the Galactic plane", vol. 380, no. 6652, pp. 1338–1343, 2023

- Observation of a diffuse neutrino flux concentrated along the Galactic Plane (see Steve Sclafani's talk Parallel 11A)
- π^0 spatial model : spatial template that incorporates the MeV to GeV π^0 component, inferred from the gamma-ray emission.
- Where are the galactic sources of neutrinos?
- What is the exact nature of correlations between gamma rays and neutrinos?

- Distinct signature of hadronic gamma rays
- Hard to detect with Fermi-LAT's energy dispersion.
- Energy resolution of LAT above 1 GeV: <10%
- ~20% at 100 MeV and ~28% at 30 MeV
- Previously Observed around SNRs (IC443, W44)
- Can manifest as low-energy spectral break in sources around 200 MeV

arXiv: 2406.03691

Confirmed Low-energy Spectral Breaks in 4FGL Sources

Updated LAT analysis confirmed characteristic

break in 56 sources between 50 MeV and 1 GeV

Abdollahi, S., "Search for New Cosmic-Ray Acceleration Sites within the 4FGL Catalog Galactic Plane Sources", *The Astrophysical Journal*, Vol. 933, No. 2, 2022.

4FGL Name	I(50 - 1000) $10^{-6} (MeV/cm^2/s)$	$\Delta I(50 - 1000)$ stat/syst	E_{break} (MeV)	ΔE_{break}	Γ_1	$\Delta\Gamma_1$ stat/syst	Γ_2	$\Delta\Gamma_2$ stat/syst
1 10000 4 0150	10 (110 (7011 75)	2 7 /0 6	(11107)	70/40	1.05	0.14/0.00	0.04	0.01/0.14
L J0222.4+6156e	47.8	2.7/0.6	465	78/40	1.35	0.14/0.03	2.34	0.21/0.14
L J0240.5+6113	237.6	1.9/6.6	142	10/74	1.63	0.03/0.36	2.10	0.02/0.10
L J0330.7+5845	3.2	0.5/0.3	367	38/52	-0.68	0.75/0.81	3.42	0.64/0.21
L J0340.4 $+5302$	34.1	1.3/5.8	284	43/116	1.60	0.14/0.38	3.27	0.23/0.35
L J0426.5 + 5434	15.1	0.8/0.9	338	47/80	1.25	0.16/0.35	2.50	0.18/0.07
L $J0500.3 + 4639e$	11.6	1.0/1.6	252	43/107	0.14	0.61/1.06	2.17	0.19/0.08
L J0540.3 $+2756e$	14.8	1.5/4.8	493	82/146	0.90	0.25/0.54	2.64	0.52/0.37
L J0609.0+2006	4.7	0.7/0.8	499	134/59	0.11	0.67/0.56	3.52	0.66/0.35
L J0617.2 $+2234e$	122.5	2.4/1.1	276	19/3	1.06	0.05/0.03	1.75	0.03/0.03
L J0620.4 + 1445	3.2	0.6/0.4	355	36/55	0.26	0.44/0.36	4.03	0.71/0.63
L J0634.2 $+0436e$	24.1	1.4/15.5	243	41/121	1.07	0.13/0.50	2.00	0.13/0.26
L J0639.4 $+0655e$	36.6	3.3/19.2	233	31/167	-0.13	0.66/0.95	2.51	0.23/0.59
L J0709.1 -1034	5.1	0.8/2.2	351	57/23	0.06	0.90/0.25	3.40	0.56/0.36
L J0844.1 - 4330	15.2	2.6/2.4	159	28/76	0.35	0.19/0.46	3.28	0.20/0.41
L J0850.8 - 4239	10.8	1.4/1.7	424	83/26	1.24	0.12/0.11	3.71	0.30/0.03
L J0904.7 $-4908c$	10.6	0.7/1.4	402	12/173	1.10	0.07/1.19	2.99	0.16/0.71
L J1008.1-5706c	12.3	1.6/5.1	409	76/37	0.96	0.43/0.55	3.40	0.64/0.33
L J1018.9 - 5856	130.0	3.4/11.9	73	1/24	0.32	0.02/0.31	1.98	0.02/0.05
L J1045.1 - 5940	49.8	2.3/6.0	525	26/178	1.12	0.05/0.17	2.12	0.11/0.14
L J1351.6-6142	26.9	2.7/12.5	125	8/22	-0.87	0.17/0.59	2.37	0.12/0.30
Т								

 Table 4. Spectral parameters of all confirmed sources showing a significant break

TeV associations: 16

Source Properties

IceCube Analysis

- Combined dataset of 11 years of tracks and 10 years of cascade events
- Stacking various source classes, weighted by source gamma-ray flux
- Catalog search with all 56 sources

Analysis Details

•Catalog Analysis:

- °All 56 sources
- °No Fermi-LAT π^0 template
- $^{\circ}\,\text{Test}$ sensitivity for $\gamma=2$, $\gamma=3$ and $\gamma=\gamma$ of
 - the 4FGL source after the break

• Stacking Analysis:

- $^{\circ}$ Source classes with no of sources > 5
- °Two different approaches:
 - Fermi-LAT π^0 template (as additional

background events)

No Fermi-LAT π^0 template (baseline)

- °Weighted with respect to individual MeV
 flux
- $^{\circ}\,\text{Test}$ sensitivity for $\gamma=2$, $\gamma=3$

Sensitivity flux: Flux which 90% of the time generates a TS greater than the median TS of the bkg only simulations.

and $\gamma = \gamma$ of k

seline) vidual MeV

8

Sensitivity: Stacking Search Weighted Stacking with Combined Data Set: Sensitivity Spectrum for $\gamma = 2$ without π^0 template IceCube Work in Progress < 1% of galactic diffuse flux 10^{2} 10^{1} $E_{(\nu\bar{\nu})}$ [TeV]

Sensitivity: Catalog Search

$v + \bar{v}$ Sensitivity Flux Comparison for Sources with different Γ

Sensitivity: Catalog Search

- •Calculate predicted neutrino flux by extrapolating the MeV γ -ray flux to 100 TeV with simple power-law
- Predicted flux for 29 out of 56 sources falls below the sensitivity
- Compare the Sensitivity Spectra for 27 sources

$\nu + \bar{\nu}$ Sensitivity and Extrapolated Flux Comparison

- •Sources showing the characteristic pion bump signature can be explored for potential hadronic activity.
- Probe GeV-TeV γ -ray obscured sources
- •Performed initial sensitivity studies on scrambled data ^oStacking search

°Catalog search

- •Using 10 years of IceCube data, the contribution from these sources could be constrained to less than 10% of the galactic diffuse flux
- •Next steps: determine sensitive energy ranges, handle source confusion.
- •Work in progress. Stay Tuned!

Summary and Outlook

Back up

