Robust inference of the Galactic center excess spatial morphology Deheng Song (YITP, Kyoto University)

09/11/2024 11th Fermi Symposium, U Maryland

Based on DS, C. Eckner, C. Gordon, F. Calore, O. Macias, K. N. Abazajian, S. Horiuchi, M. Kaplinghat and M. Pohl, MNRAS 530 (2024) no.4, 4395-4411 (arXiv:2402.05449)

WIMP dark matter

- Weakly Interacting Massive Particles (WIMPs) can naturally account for the observed dark matter abundance through the freeze-out production mechanism
 - A remarkable coincidence between cosmology and particle physics
 - Self-annihilation of dark matter particles is expected to generate latetime signals, including gamma rays

The excess

- A Galactic Center Excess (GCE) appears to resemble a WIMP dark matter signal both spatially and spectrally
 - Identified in early Fermi data [Goodenough & Hooper (2009)]
 - Concentrated at the GC and extends to $\sim\pm20^\circ$ in latitude
 - Exhibits a hard spectrum peaking at a few GeV

Two candidates

- Dark Matter: The GCE is consistent with the annihilation spectrum and cross section of thermal WIMP dark matter.
- Millisecond Pulsars: Their average gamma-ray spectrum is also consistent with the GCE.

Two frontiers

• Morphology: Does the excess follow the stellar distribution or the dark matter distribution?

• Photon-Count Statistics: Is the excess of a point-source or diffuse nature?

Two frontiers

• Morphology: Does the excess follow the stellar distribution or the dark matter distribution?

40 10 32 latitude (deg.) 24 16 8 b, Gal. 0 -5 -8 -10 -16 5 10 -10 ℓ , Gal. longitude (deg.)

Photon-Count Statistics: Is the excess of a point-source or diffuse nature?

Discussed in Silvia's talk

Two frontiers

Morphology: Does the excess follow the stellar distribution or the dark matter distribution?

This talk

Photon-Count Statistics: Is the excess of a point-source or diffuse nature?

Discussed in Silvia's talk

Spherical symmetry of GCE

- Early studies on GCE morphology focused on testing its spherical symmetry
 - Consistent with a spherical profile following an $\sim r^{-2.4}$ distribution

Calore et al. (2014)

Dylan et al. (2014)

Interpretation of the sphericity

- Dark Matter: Spherical symmetry is expected for cold dark matter (e.g., NFW profile)
 - An inner slope of $\gamma \sim$ 1.1 to 1.3 on the NFW profile is acceptable

$$\rho(r) = \rho_0 \left(\frac{r}{R_s}\right)^{-\gamma} \left(1 + \frac{r}{R_s}\right)^{\gamma-3}$$

 Millisecond Pulsars: Low-mass X-ray binaries, which are progenitors of MSPs, observed in M31 show a similar sharp rise in the inner region

[Abazajian & Kaplinghat (2012)]

The Galactic bulge

• Unlike our view of M31, we observe the Milky Way edge-on

The Galactic bulge

- Unlike our view of M31, we observe the Milky Way edge-on
- The line-of-sight distribution of the stellar population in the inner Galaxy is boxy and asymmetric

The Galactic bulge

- Unlike our view of M31, we observe the Milky Way edge-on
- The line-of-sight distribution of the stellar population in the inner Galaxy is boxy and asymmetric
 - A nuclear bulge in the innermost region is linked to the Central Molecular Zone

Test of bulge templates

- Galactic bulge templates were first tested by Macias et al. (2017) and Bartels et al. (2017)
- Both studies found a preference for the bulge over dark matter

 $[\]begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & -20 \\ 1 & 1 & -20 \\ 1 & 1 & -20 \end{bmatrix}$

Macia et al. (2017)

Bartels et al. (2017)

Improved gas maps

• Hydrodynamic simulations + dividing the Galaxy into rings

Macia et al. (2017)]

• Including continuum emission to better account for atomic hydrogen

Phol et al. (2022)

Improved bulge model

- Efforts have been made to improve the bulge model using the latest VVV survey and a non-parametric model based on maximum entropy deconvolution [Coleman et al. (2020)]
- With improved gas maps and bulge model, the preference for the bulge model is persistent

• Di Mauro (2021) found mixed results

$\boxed{\frac{1}{\text{Log}(\mathcal{L}) - \text{Log}(\mathcal{L}_{\text{DM}})}}$	Baseline	ICS combined	OB stars	Pulsars	SL ext.	SNR	Yusifov
BB	-1139	-1192	-797	-1434	-543	-826	-1043
DM + NB	+179	+217	+38	+261	+84	+135	+205
BB + NB	+55(-124)	+21(-196)	-34(-72)	+36(-225)	-51(-135)	+15(-120)	+9(-196)

- Di Mauro (2021) found mixed results
 - Boxy Bulge (BB) + Nuclear Bulge (NB) is preferred over dark matter (DM) in most background models

$\boxed{\frac{1}{\log(\mathcal{L}) - \log(\mathcal{L}_{\rm DM})}}$	Baseline	ICS combined	OB stars	Pulsars	SL ext.	SNR	Yusifov
BB	-1139	-1192	-797	-1434	-543	-826	-1043
DM + NB	+179	+217	+38	+261	+84	+135	+205
BB + NB	+55(-124)	+21(-196)	-34(-72)	+36(-225)	-51(-135)	+15(-120)	+9(-196)

- Di Mauro (2021) found mixed results
 - Boxy Bulge (BB) + Nuclear Bulge (NB) is preferred over dark matter (DM) in most background models
 - Only the DM + NB model is preferred over the BB + NB model, but this lacks physical motivation

$Log(\mathcal{L}) - Log(\mathcal{L}_{DM})$	Baseline	ICS combined	OB stars	Pulsars	SL ext.	SNR	Yusifov
BB	-1139	-1192	-797	-1434	-543	-826	-1043
DM + NB	+179	+217	+38	+261	+84	+135	+205
BB + NB	+55(-124)	+21(-196)	-34(-72)	+36(-225)	-51(-135)	+15(-120)	+9(-196)

 McDermott et al. (2023) masked the Galactic plane and point sources and tested various GALPROP-based background models.

	Background		
Excess model	template	$-2\Delta ln \mathcal{L}$	$\Delta \ln \mathcal{B}$
No excess	Ring-based	0	0
X-shaped bulge	Ring-based	+30	-190
Dark matter	Ring-based	-237	+12
Boxy & X-shaped bulges	Ring-based	-634	+178
Boxy bulge	Ring-based	-724	+228
Boxy bulge 'plus'	Ring-based	-765	+311
Boxy bulge 'plus' & DM	ring-based	-817	+316
No excess	Astrophysical	-4539	+2933
Boxy bulge	Astrophysical	-6398	+3814
Boxy bulge 'plus'	Astrophysical	-6477	+3853
Dark matter	Astrophysical	-7288	+4268
Boxy bulge 'plus' & DM	Astrophysical	-7401	+4298

- McDermott et al. (2023) masked the Galactic plane and point sources and tested various GALPROP-based background models.
 - GALPROP-based bkg. model performs much better than the hydro + ring-based model

		Excess model	Background template	$-2\Delta \ln \mathcal{L}$	$\Delta \ln \mathcal{B}$
		No excess	Ring-based	0	0
		X-shaped bulge	Ring-based	+30	-190
		Dark matter	Ring-based	-237	+12
		Boxy & X-shaped bulges	Ring-based	-634	+178
Galprop >> Rinas		Boxy bulge	Ring-based	-724	+228
		Boxy bulge 'plus'	Ring-based	-765	+311
		Boxy bulge 'plus' & DM	ring-based	-817	+316
		ST.	A / 1 * 1	4520	1 0000
	·	No excess	Astrophysical	-4539	+2933
		Boxy bulge	Astrophysical	-6398	+3814
		Boxy bulge 'plus'	Astrophysical	-6477	+3853
		Dark matter	Astrophysical	-7288	+4268
		Boxy bulge 'plus' & DM	Astrophysical	-7401	+4298

- McDermott et al. (2023) masked the Galactic plane and point sources and tested various GALPROP-based background models.
 - GALPROP-based bkg. model performs much better than the hydro + ring-based model
 - DM (NFW with $\gamma=1.2$) is preferred in the GALPROP-based bkg. model

	Excess model	Background template	$-2\Delta \ln \mathcal{L}$	$\Delta \ln \mathcal{B}$
r	No excess	Ring-based	0	0
	X-shaped bulge	Ring-based	+30	-190
	Dark matter	Ring-based	-237	+12
	Boxy & X-shaped bulges	Ring-based	-634	+178
Galprop >> Rinas	Boxy bulge	Ring-based	-724	+228
	Boxy bulge 'plus'	Ring-based	-765	+311
	Boxy bulge 'plus' & DM	ring-based	-817	+316
Į	No excess	Astrophysical	-4539	+2933
	Boxy bulge	Astrophysical	-6398	+3814
	Boxy bulge 'plus'	Astrophysical	-6477	+3853
	Dark matter	Astrophysical	-7288	+4268
	Boxy bulge 'plus' & DM	Astrophysical	-7401	+4298

13

DM > Bulge

- McDermott et al. (2023) masked the Galactic plane and point sources and tested various GALPROP-based background models.
 - GALPROP-based bkg. model performs much better than the hydro + ring-based model
 - DM (NFW with $\gamma=1.2$) is preferred in the GALPROP-based bkg. model
- No test of the latest bulge model

Galprop >> Rings

• Statement about the ring-based background model is dubious

Excess model	Background template	$-2\Delta \ln \mathcal{L}$	$\Delta \ln \mathcal{B}$
 No excess	Ring-based	0	0
X-shaped bulge	Ring-based	+30	-190
Dark matter	Ring-based	-237	+12
Boxy & X-shaped bulges	Ring-based	-634	+178
Boxy bulge	Ring-based	-724	+228
Boxy bulge 'plus'	Ring-based	-765	+311
Boxy bulge 'plus' & DM	ring-based	-817	+316
 No excess	Astrophysical	-4539	+2933
Boxy bulge	Astrophysical	-6398	+3814
Boxy bulge 'plus'	Astrophysical	-6477	+3853
Dark matter	Astrophysical	-7288	+4268
Boxy bulge 'plus' & DM	Astrophysical	-7401	+4298

13

DM > Bulge

Testing the findings

- McDermott et al. have made their data and models public (through the gcepy package)
- We've decided to understand the differences by working with their data/models
- We also test additional bulge models

DS, C. Eckner, C. Gordon, F. Calore, O. Macias, K. N. Abazajian, S. Horiuchi, M. Kaplinghat and M. Pohl, MNRAS 530 (2024) no.4, 4395-4411

Testing bulge models within GALPROP-based bkg. models

• We can reproduce the results of McDermott et al. using their GALPROP-based background model and bulge model

Testing bulge models within GALPROP-based bkg. models

- We can reproduce the results of McDermott et al. using their GALPROP-based background model and bulge model
- The Coleman et al. bulge model is still strongly preferred when tested with the data from McDermott et al.

Discrepancy in ring-based background model

- We find significant discrepancies in testing the ring-based background model
 - The ring-based background model provides a significant improvement in fitting the data compared to the GALPROP-based background model, contradicting McDermott et al.

Discrepancy in ring-based background model

- We find significant discrepancies in testing the ring-based background model
 - The ring-based background model provides a significant improvement in fitting the data compared to the GALPROP-based background model, contradicting McDermott et al.
 - The Coleman et al. bulge model remains the most preferred template for the GCE

Understanding the discrepancy

- McDermott et al./gcepy failed to find the best fit for the ring-based background model due to the use of limited priors for the dust correction maps
 - These maps are corrections for dark neutral medium gas and are also included by the Fermi collaboration in developing the Galactic diffuse model
- gcepy also agrees with the superiority of the ring-based background model once broader priors are adopted

Tests including the Galactic plane

- We unmask the galactic plane and include the nuclear bulge
- Also use a larger point-source mask
- On top of ring-based background model + nuclear bulge, Coleman model model is still preferred

Adaptive template fitting

• We use skyFACT code to test adaptive template fitting

- Spatial templates are re-modulated and optimized during fitting to reduce residuals
- With ring-based background model + nuclear bulge + Coleman model, no evidence for a dark matter component

[[]Storm et al. (2017)]

Zhong & Cholis (2024)

- Tested additional masks and GALPROP models
- They find that Coleman bulge model is comparable to dark matter (NFW with $\gamma=1.2$)
- The ring-based background model has not been tested

Summary

- We test different bulge models in the masked GCE data using various background models
- The ring-based background model fits the data much better than the GALPROP-based models
- The bulge model from the latest VVV survey (Coleman et al. 2020) is consistently the preferred template for the GCE
- Our results are consistent across different masks/ROIs and when using the adaptive template fitting method

Best-fit bkg. Models

GCE spectra

