11th International Fermi Symposium College Park, Maryland, USA, September 9-13, 2024

On non-detection of Gamma-Ray Bursts in three compact binary merger events detected by LIGO

Soebur Razzaque

THE GEORGE

WASHINGTON

UNIVERSITY

THE GEORG

UNIVERSITY

National Research Foundatior

GW170817 and GRB 170817A

GW-GRB joint detection

During LIGOs O2 and O3:

- A second Binary Neutron Star (BNS) merger **GW190425** and
- Five Black Hole Neutron Star (BHNS) mergers GW190917_114636, GW191219_163120, GW200115_042309, GW200210_114636 and GW200105 162426

A few of these events could be possible sources for a GRB but no electromagnetic counterpart were detected.

GW-GRB joint detection

During LIGOs O2 and O3:

- A second Binary Neutron Star (BNS) merger **GW190425** and
- Five Black Hole Neutron Star (BHNS) mergers GW190917_114636, GW191219_163120, GW200115_042309, GW200210_114636 and GW200105 162426

A few of these events could be possible sources for a GRB but no electromagnetic counterpart were detected.

Possible explanations for the lack of further GW/GRB joint detections

- I. Sub luminous GRB events like GRB170817A can only be detected up to about 80 Mpc [*Abbott+2017*].
- 2. Secondly, depending on the location of the source, it's possible that the source was outside the field of view of Fermi-GBM/Swift [*Fletcher+2024*].

A third possibility

- Only a fraction of GW events would be detected as GRBs
- Joint detection or non-detection is extremely useful

Credit: LIGO/VIRGO Collab.

Methodology

- We performed Bayesian inference on the following GW events BNS events: GW170817, GW190425 BHNS events: GW190917_114636, GW2000115_042309
- Used **Bilby** which is python based Bayesian inference library for GW astronomy [*Ashton+2019*]
- GW170817 has an observed EM counterpart GRB170817A. As a result, the inclination angle is well constrained. <u>To test how effective</u> <u>pure GW analysis is using Bilby, we aimed to obtain similar values for</u> the inclination angle through pure GW analysis.
- To perform Bayesian analysis, we define a prior giving the distribution of the waveform parameters. Following convention, we set up two priors that represent a low spin and high spin case for the merger.

Luyanda Mazwi (MSc work)

Luyanda Mazwi, SR & Lutendo Nyadzani, MNRAS **531,** 2162 (2024)

Waveforms

Waveform models

- Frequency domain waveform models were used to perform the analysis.
 - BNS mergers: IMRPhenomPv2_NRTidal, IMRPhenomD_NRTidal and TaylorF2.
 - BHNS mergers: IMRPhenomPv2 and IMRPhenomXPHM.
- TaylorF2 is an analytical Post-Newtonian (PN) model for GWs from non-spinning binaries in the quasi-circular inspiral phase in the frequency domain. Corrections up to 3.5 PN and is computed in the stationary phase approximation (SPA) [Heurta+2014].
- Remaining 3 waveforms are all Inspiral Merger Ringdown (IMR) based on phenomenological (Phenom) treatments of the IMR.
- IMRPhemomD is a model based on aligned spin point particle models tuned to Numerical Relativity (NR) hybrids and Effective One Body (EOB) wave forms [Abott+2019]
- IMRPhenomP includes spin precession [Abott+2019]
- IMRPhenomXPHM models GWs from a quasi circular precessing BBH [Pratten+2021].

Choice of priors on inclination and distance

Parameter		Low spin prior ($\chi \le 0.05$)	High spin prior ($\chi \le 0.89$)
Inclination ι	GW190425	uniform prior: $0^{\circ} \le \iota \le 90^{\circ}$	Uniform prior: $0^{\circ} \le \iota \le 90^{\circ}$
	GW190917	Uniform prior: $0^{\circ} \le \iota \le 90^{\circ}$ & Sinusoidal prior: $0^{\circ} \le \iota \le 360^{\circ}$	Uniform prior: $0^{\circ} \le \iota \le 90^{\circ} \&$ Sinusoidal prior: $0^{\circ} \le \iota \le 360^{\circ}$
	GW200115	Uniform prior: $0^{\circ} \le \iota \le 90^{\circ}$ & Sinusoidal prior: $0^{\circ} \le \iota \le 360^{\circ}$	Uniform prior: $0^{\circ} \le \iota \le 90^{\circ}$ & Sinusoidal prior: $0^{\circ} \le \iota \le 360^{\circ}$
Luminosity	GW190425	Uniform prior: 104 Mpc \leq D \leq 188 Mpc	Uniform prior: 104 Mpc \leq D \leq 188 Mpc
	GW190917	Power law with Index α = 2: 410 Mpc \leq D \leq 1060 Mpc	Power law with Index α = 2: 410 Mpc \leq D \leq 1060 Mpc
	GW200115	Power law with Index α = 2: 202 Mpc \leq D \leq 352 Mpc	Power law with Index α = 2: 202 Mpc \leq D \leq 352 Mpc

Results of Bayesian analysis

Soebur Razzaque

Results on the inclination: GW170817 (BNS)

Table 1. Results for GW170817 from the low-spin prior.

Waveform	Inclination (°)	Chirp mass (M_{\odot})	Mass ratio	
TaylorF2	$142.88_{-0.8}^{+0.9}$	$1.19^{+0.0}_{-0.0}$	$0.42_{-0.03}^{+0.17}$	
IMRPhenomP	$155.28^{+15.99}_{-18.57}$	$1.20\substack{+0.0\\-0.0}$	$0.83_{-0.11}^{+0.11}$	
IMRPhenomD	$155.21^{+15.98}_{-18.56}$	$1.20^{+0.0}_{-0.0}$	$0.83_{-0.11}^{+0.11}$	

Table 2. Results for GW170817 using a high-spin prior.

Waveform	Inclination (°)	Chirp mass (M_{\odot})	Mass ratio	
TaylorF2	$152.41^{+18.65}_{-15.82}$	$1.19^{+0.0}_{-0.0}$	$0.61^{+0.26}_{-0.23}$	
IMRPhenomP	$155.28^{+18.65}_{-16.01}$	$1.19_{-0.0}^{+0.0}$	$0.65_{-0.19}^{+0.24}$	
IMRPhenomD	$155.57^{+15.62}_{-18.82}$	$1.21\substack{+0.0\\-0.0}$	$0.69^{+0.19}_{-0.21}$	

Results on the inclination: GW190425 (BNS)

Table 3.	Results	for	GW	190425	using a	low-spin	prior.
----------	---------	-----	----	--------	---------	----------	--------

Waveform	Inclination (°)	Chirp mass (M_{\odot})	Mass ratio	
TaylorF2	$44.64^{+29.94}_{-28.45}$	$1.47_{-0.00}^{+0.02}$	$0.43_{-0.09}^{+0.41}$	
IMRPhenomP	$46.54_{-30.54}^{+28.96}$	$1.47^{+0.02}_{-0.00}$	$0.43^{+0.36}_{-0.07}$	
IMRPhenomD	$46.09^{+30.65}_{-32.38}$	$1.47\substack{+0.02 \\ -0.00}$	$0.43^{+0.36}_{-0.07}$	

Table 4. Results for GW190425 using a high-spin prior.

Waveform	Inclination (°)	Chirp mass (M_{\odot})	Mass ratio
TaylforF2	$98.03^{+58.00}_{-63.39}$	$1.49^{+0.01}_{-0.02}$	$0.62^{+0.25}_{-0.33}$
IMRPhenomP	$89.04_{-60.36}^{+63.11}$	$1.47^{+0.03}_{-0.00}$	$0.35_{-0.12}^{+0.43}$
IMRPhenomD	$87.95_{-62.83}^{+62.85}$	$1.99\substack{+0.00\\-0.00}$	$0.13_{-0.00}^{+0.00}$

Soebur Razzaque

Results on the inclination: GW190917 (BHNS)

Waveform	Inclination (°)	Chirp mass (M_{\odot})	Mass ratio
IMRPhenomP IMRPhenomXPHM	$\begin{array}{r} 44.63\substack{+30.14\\-29.38\\44.77\substack{+31.02\\-30.26\end{array}}\end{array}$	$4.07^{+0.05}_{-0.90}$ $4.07^{+0.05}_{-0.24}$	$\begin{array}{c} 0.25\substack{+0.01\\-0.01}\\ 0.25\substack{+0.01\\-0.01}\end{array}$

 Table 7. Results for GW190917 using a uniform prior in inclination.

 Table 8. Results for GW190917 using a sinusoidal prior in inclination.

Waveform	Inclination (°)	Chirp mass (M_{\odot})	Mass ratio
IMRPhenomP IMRPhenomXPHM	$92.81^{+48.12}_{-50.42} \\90.52^{+53.28}_{-49.87}$	$4.06^{+0.05}_{-0.60}$ $4.07^{+0.05}_{-0.79}$	$\begin{array}{c} 0.25\substack{+0.01\\-0.01}\\ 0.25\substack{+0.01\\-0.01}\end{array}$

Inclination angle estimates for **BHNS** mergers GW200115 and GW190917 with priors uniform in the inclination from $0^{\circ} \le \iota \le 90^{\circ}$ a prior with sinusoidal distribution from 0° to 360°

Results on the inclination: GW200115 (BHNS)

Waveform	Inclination (°)	Chirp mass (M_{\odot})	Mass ratio
IMRPhenomP	$45.81^{+31.67}_{-35.44}$	$2.69^{+0.00}_{-0.00}$	$0.50^{+0.09}_{-0.12}$
IMRPhenomXPHM	$48.15_{-30.49}^{+28.27}$	$2.75^{+0.00}_{-0.00}$	$0.39^{+0.12}_{-0.10}$

 Table 5. Results for GW200115 using a uniform prior in inclination.

 Table 6. Results for GW200115 using a sinusoidal prior in inclination.

Waveform	Inclination (°)	Chirp mass (M_{\odot})	Mass ratio
IMRPhenomP IMRPhenomXPHM	$\begin{array}{c} 60.16\substack{+37.24\\-21.77}\\126.62\substack{+0.74\\-11.45}\end{array}$	$2.55^{+0.01}_{-0.01}$ $2.69^{+0.00}_{-0.00}$	$\begin{array}{c} 0.27\substack{+0.13\\-0.05}\\ 0.50\substack{+0.09\\-0.10}\end{array}$

Inclination angle estimates for **BHNS** mergers GW200115 and GW190917 with priors uniform in the inclination from $0^{\circ} \le \iota \le 90^{\circ}$ a prior with sinusoidal distribution from 0° to 360°

Detection rate of GW events

- The range for a BNS or BHNS system with component masses $m_1^{}$ and $m_2^{}$ is found using GWINC
- Using the local rates of BNS and BHNS from Burns (2020)

Event	m_1 (M _{\odot})	m_2 (M _{\odot})	Insprial range (Mpc)	Rate (yr ⁻¹)
GW170817	$1.47_{-0.10}^{+0.12}$	$1.26^{+0.09}_{-0.09}$	179^{+10}_{-10}	12^{+30}_{-10}
GW190425	$2.1^{+0.5}_{-0.4}$	$1.3^{+0.3}_{-0.2}$	208^{+36}_{-28}	18^{+72}_{-16}
GW200115	$5.9^{+2.0}_{-2.5}$	$1.44_{-0.28}^{+0.85}$	304_{-70}^{+102}	3^{+81}_{-3}
GW190917	$9.7^{+3.4}_{-3.9}$	$2.1^{+1.1}_{-0.4}$	410^{+119}_{-84}	8^{+180}_{-8}

Joint GW-GRB detection rate

The orbital inclination angle in the 3 GW events was likely such that a short GRB (if formed) was pointing away from our direction.

Joint GW-GRB detection rate

The orbital inclination angle in the 3 GW events was likely such that a short GRB (if formed) was pointing away from our direction.

Cumulative probability distributions (CPDs) for SGRB emission and GWs from BNS mergers as a function of SGRB jet opening angle and 90° - ι , where ι is inclination of the binary.The CDPs have been adapted from *Fong+2015* where the maximum jet opening angle was 30° (blue dashed line) and 90° (red dashed curve)

Joint GW-GRB detection rate

The orbital inclination angle in the 3 GW events was likely such that a short GRB (if formed) was pointing away from our direction.

Cumulative probability distributions (CPDs) for SGRB emission and GWs from BNS mergers as a function of SGRB jet opening angle and 90° - ι , where ι is inclination of the binary.The CDPs have been adapted from *Fong+2015* where the maximum jet opening angle was 30° (blue dashed line) and 90° (red dashed curve)

Probability of short GRB detection is ~ 1/2 of every BNS or BHNS event for 33° jet

Soebur Razzague

Conclusions

- The results obtained for the inclination angles of GW events GW190425, GW190917 and GW200115 all suggest inclinations greater than 33°.
- However, there are very large uncertainties on the median values for inclination obtained here. This is due to the luminosity distance inclination angle degeneracy.
- Without an independent means of constraining the luminosity distance, this degeneracy can't be broken.
- Our findings still support current estimates for joint detection rate in O3.

Thank you!

