Multiwavelength Analysis of Periodic Fermi-LAT Blazars Exhibiting Hints of Periodicity

P. Peñil, M. Ajello, S. Buson, A. Domínguez, L. Marcotulli, J. Becerra, A Rico on behalf of the Fermi-LAT collaboration with J. Otero-Santos, R. Westernacher-Schneider, N. Torres-Alba, J.A. Acosta-Pulido, J. Zrake

11th Fermi Symposium Clemson University (Clemson, SC, USA) 9-11-2024

Introduction

- Detecting of long-term periodic oscillations in γ rays is an important step for identifying potential Binary-SMBH (e.g. Rieger & Volper, 2010)
- Similar periodic emission in other energy bands point to a common origin:
 - Traditional indicator for Binary-SMBH Candidate
- Infer the physical parameters of the putative binary, e.g:
 - eccentricity (e.g., Zrake et al., 2021), primary SMBH mass (e.g., Westernacher-Schneider et al., 2022)
- Single SMBH:
 - Jet precession
 - (Ostorero et al., 2004)
 - Accretion Disk Instabilities (Gracia et al., 2003)

Blazar Sample

- 24 blazars with evidence of periodicity (>2σ pre-trial) in a sample of 351 sources (Peñil et al., 2020)
 4FGL Source Name, BA(12000), Dec(12000), Type, Bedshift, Association Name, P20 Period (S/N)
- Re-analysis with 3 extra of *Fermi*-LAT observations, in total 12 years (Peñil et al., 2022)
- 5 objects: periods significance >3σ (pre-trial) (Peñil et al., 2024a)
- 19 objects: period significance >2.0σ (pre-trial) (Peñil et al., 2024b)

4FGL Source Name	RA(J2000)	Dec(J2000)	Type	Redshift	Association Name	P20 Period (S/N)	Period (S/N)
						[yr]	[yr]
J1555.7+1111	238.93169	11.18768	bll	0.433	PG 1553+113	$2.2 (> 4.0\sigma)$	$2.2 (4.4\sigma)$
J2158.8-3013	329.71409	-30.22556	Ыl	0.116	PKS 2155-304	$1.7 (> 3.0\sigma)$	$1.7 (3.5\sigma)$
J0811.3+0146	122.86418	1.77344	ЬШ	1.148	OJ 014	$4.3 (> 3.5\sigma)$	$4.1 (3.1\sigma)$
J0457.0-2324	74.26096	-23.41384	fsrq	1.003	PKS 0454-234	$2.6 (> 2.5\sigma)$	$3.6(3.1\sigma)$
J0721.9+7120*	110.48882	71.34127	bll	0.127	S5 0716+714	$2.8 (>2.5\sigma)$ $0.9 (>2\sigma)$	$2.7 (3.1\sigma)$ $0.9 (1.9\sigma)$
J0043.8+3425	10.96782	34.42687	fsrq	0.966	GB6 J0043+3426	$1.8 (4.0\sigma)$	$1.9(2.8\sigma)$
J0521.7+2113	80.44379	21.21369	bll	0.108	TXS 0518+211	$2.8 (> 3.0\sigma)$	$3.1 (2.8\sigma)$
J0449.4-4350	72.36042	-43.83719	bll	0.205	PKS 0447-439	$2.5 (3.0\sigma)$	$1.9(2.7\sigma)$
J0252.8-2218	43.20377	-22.32386	fsrq	1.419	PKS 0250-225	$1.2 (> 2.5\sigma)$	$1.2(2.7\sigma)$
J1146.8+3958	176.73987	39.96861	fsrq	1.089	S4 1144+40	$3.3 (> 3.0\sigma)$	$3.3(2.3\sigma)$
J0303.4-2407	45.86259	-24.12074	Ыl	0.266	PKS 0301-243	$2.0 (3.0\sigma)$	$2.1 (2.2\sigma)$
J0428.6-3756	67.17261	-37.94081	Ыl	1.11	PKS 0426-380	$3.4 (3.0\sigma)$	$3.6(2.1\sigma)$
J2056.2-4714*	314.06768	-47.23386	fsrq	1.489	PKS 2052-47	$1.7~(>2.5\sigma)$	$\frac{3.1}{1.7\sigma}$ (1.7 σ)
$J1248.2 + 5820 \star$	192.07728	58.34622	bll	-	PG 1246+586	2.0 (3.0σ)	$\frac{2.1}{1.4} (1.9\sigma)$ 1.4 (1.7 σ)
J2258.0-2759*	344.50485	-27.97588	fsrq	0.926	PKS 2255-282	$1.3 (>3.5\sigma)$	$\frac{2.8}{1.4} (1.9\sigma)$ $1.4 (1.8\sigma)$
J1903.2+5541	285.80851	55.67557	bll	-	TXS 1902+556	$3.8 (> 2.5\sigma)$	$3.3(1.8\sigma)$
J0818.2+4223	124.56174	42.38367	Ьll	0.530	S4 0814+42	$2.2 (3.5\sigma)$	$2.2(1.8\sigma)$
J0211.2+1051	32.81532	10.85811	bll	0.2	MG1 J021114+1051	$1.7 (> 3.5\sigma)$	$2.9(1.8\sigma)$
J0501.2-0157	75.30886	-1.98359	fsrq	2.291	S3 0458-02	$1.7 (> 2.5\sigma)$	$3.8(1.8\sigma)$
J1303.0+2435	195.75454	24.56873	bll	0.993	MG2 J130304+2434	$2.0 (> 2.5\sigma)$	$2.1 (1.6\sigma)$
J0102.8+5825	15.71134	58.41576	fsrq	0.644	TXS 0059+581	$2.1 (3.0\sigma)$	$4.0 (1.4\sigma)$
J1454.5+5124	223.63225	51.413868	bll	_	TXS 1452+516	$2.1 (> 3.5\sigma)$	$2.1 (1.2\sigma)$
J0210.7-5101	32.68952	-51.01695	fsrq	1.003	PKS 0208-512	$2.6 (> 3.0\sigma)$	$3.8(1.1\sigma)$
116494 + 5238	252 35208	52 58336	bll		87GB 164812 2+524023	$27(>25\sigma)$	$28(11\sigma)$

Multiwavelength Data

4

- X-ray band: Swift-XRT
- UV bands: UVOT
- Optical data:
 - Katzman Automatic Imaging Telescope (KAIT)
 - Catalina Sky Survey (CSS)
 - Tuorla blazar monitoring program
 - American Association of Variable Star Observers (AAVSO)
 - Small and Moderate Aperture Research Telescope System (SMARTS)
 - Astronomy & Steward Observatory
- Radio data:
 - Owens Valley Radio Observatory (OVRO)

Methodology

- Periodicity:
 - *Fermi*-LAT LCs over 12 years telescope time binned 28-days intervals
 - MWL data binned 28-days intervals
 - Methods:
 - Generalized Lomb-Scargle periodogram
 - Phase Dispersion Minimization
 - Weighted Wavelet Z-transform
- Multiwavelength Correlation:
 - Z-Transformed Discrete Function:
 - Time lags in γ rays
- Significance:
 - Emmanoulopoulos method: same PSD and PDF as the original
 - PSD model: power-law with indices [0.8-1.6]
 - Trial-factor correction: 0σ global significance for <4.5 σ pre-trial significance

Results(I): Blazars with Periods at >3\sigma

- Periodicity:
 - PG 1553+113 (period 2.2 years in γ rays)
 - Same period in optical, and radio (5σ pre-trial) (Ackermann et al., 2015)
 - X-ray: 1.5 yr (2σ pre-trial) (Aniello et al., 2024)
 - Secondary peak at 2.2 yr (2σ pre-trial) (Huang et al., 2021)
 - \circ PKS 2155-304 (period 1.7 years in γ rays):
 - Same period in X-ray and optical (2.5σ pre-trial) (Battha & Dhital, 2020)

(Peñil et al., 2024a)

- Correlation:
 - X-ray: Time lag <28 days (3.0 σ)
 - Suggested co-spatial origin. γ rays may be produced via external Compton scattering on either the photons from the BLR or those from the dusty torus, which also dominates the X-ray emission (Sikora et al., 2013)
 - Optical: Time lag <28 days (2.0σ - 4.0σ)
 - Co-spatial origin of both emissions, typically expected from leptonic models (e.g., Liodakis et al., 2018)
 - Radio: Time lag -200 days (2.0 σ)
 - Observed in jet regions further away from the central engine (γ rays generation); high opacity and self-absorption in the inner regions (e.g., Ackermann et al., 2015)

Results (II): Long-Term Trend in the LC of PG 1553

Results (II): Long-Term Trend in the LC of PG 1553

- Long-term trend is an increase or decrease of the flux over extended epochs of time
- Compatible slope of a linear fit of MWL emissions
- Two questions:

• What can be causing this long-term trend?

(Peñil et al., 2024a)

• Are long-term trends common in blazars?

Results (II): Long-Term Trend in the LC of PG 1553

- What can be producing this long-term trend?
 - Hypothesis:
 Section of a larger period
- DASCH Historical Optical data (100 years)[.]
 - Evidences of period 22 years (Adhikari et. al, 2024):
 - Binary-SMBH hypothesis: Lump scenario
 - See the poster 5: Decades Long Periodicity in 2FHL Blazar PG 1553+113? (Sagar Adhikari)

- Are long-term trends common in blazars?
 - Observed in a few objects:
 - Radio+γ rays:
 - 3C 84 (Rani 2018)
 - γ rays
 - 1ES 1215+303 (Valverde et al., 2020)

- Systematic Search for Long-Term Trends in Fermi-LAT Jetted Active Galactic Nuclei (submitted to ApJ)
 - See the poster 6: A Systematic Search for Periodicity of Fermi-LAT AGN using Singular Spectrum Analysis (Alba Rico)

Results(III): Blazars with Periods at >2\sigma

- Periodicity:
 - Limited data available
 - 9 blazars analyzed
- Compatible with γ-ray period:
 - Optical:
 - PG 1246+586: 2.2 yr (2.5σ pre-trial)
 - S4 0814+42: 2.3 yr (2.5σ pre-trial)
 - PKS 0301-243: 2.1 yr (3.0σ pre-trial)
 - TXS 1902+556: 3.3 yr (3.0σ pre-trial)
 - Radio:
 - S4 1144+40: 3.3 yr (2.5σ pre-trial)

- Correlation:
 - X-ray: 1 blazar analyzed
 - Time lag <28 days (4.0σ)
 - Co-spatial origin of both emissions
 - Optical: 18 blazars analyzed
 - Time lag <28 days (2.0σ-4.0σ)</p>
 - Co-spatial origin of both emissions
 - Radio: 2 blazars analyzed
 - **Radio Delayed of 150-250 days (2.0\sigma-3.0\sigma)**
 - Observed in jet regions further away from the central engine

Summary

- Periodicity:
 - 24 blazars with periods ≥2 σ in γ rays
 - \circ 7 of them similar period than γ rays with (2.5 σ -5.0 σ): Binary-SMBH Candidate
- Correlation, co-origin with $\boldsymbol{\gamma}$ rays:
 - X-ray: 3 sources time lag <28 days (2.5σ -4.0 σ)
 - Optical: 23 sources <28 days (2.5σ -4.0 σ)
 - \circ Radio: 3 sources with delays 150-250 days (2.0 σ -4.0 σ)
- First detection and characterization of a long-term trend in the MWL emission of PG 1553+113
- Follow-up these sources with new MWL observations
- Improve the analysis methodology:
 - Singular Spectrum Analysis: see the poster 6
 A Systematic Search for Periodicity of Fermi-LAT AGN using Singular Spectrum Analysis
 (Alba Rico)

Papers

Peñil et al., 2022

Peñil et al., 2022

Adhikari et. al, 2024

Peñil et al., 2024b

