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Focus of talk — two intrinsically low-frequency
phenomena:

e Faraday rotation of the plane of linear polarisation

e Faraday conversion of linear to circular polarisation




Circular polarisation (CP) of synchrotron radiation — very low
(less than 0.1%) for B fields thought to be typical (~100 uG)

First measurements on parsec scales — Homan & Wardle
(1999); Homan, Attridge & Wardle (2001)

MOJAVE* CP Measurements (Homan & Lister 2006)

— 34 of 133 objects had detectable CP at 15 GHz (2 cm),
mostly levels of few tenths of a %, mostly in VLBI core

— Homan & Lister (2006) searched for correlations between
degree of CP and more than 20 parameters — virtually no
evidence for any correlations

*(MOJAVE — Monitoring of Jets in AGN with VLBA Experiments)




Prime suspect for mechanism generating CP: Faraday
conversion of LP to CP when EM wave travels through
magnetised plasma.

Charges can move only along B 1n conversion region:

component of polarisation E field parallel to B is absorbed
& re-emitted by free charges, but component
perpendicular to B i1s not — delay of “E parallel” relative
to “E perpendicular”

= Manifest as introduction of small amount of CP




Angle between plane of LP (E) and conversion B field
determines sign of CP produced.

If optically thin background region with field Bge, emits
synchrotron radiation with E L Bge,, and foreground

region with field Beony converts some of incident LP to

CP, can formulate problem in terms of angle ¢ between




It 1s essentially the angle ¢ between Bgen and Beony
that determines the sign of the CP:

0<@p<90—> — 90 < ¢ < 180 — +
180 < <270 — — 270 < <360 — +

Helical B-field geometry can facilitate conversion —

LP emitted at “back” of helix 1s converted to CP as it
passes through “front” of helix.

AVAVAV,




Angle between background and foreground B fields
1s determined by (1) pitch angle and (2) helicity of
the helical field.

AVAVAV,

For pitch angle ¢ (angle between axis and direction of B):
0 <1y <45 — — CP for right-handed helix (0 < ¢ < 90)
+ CP for left-handed helix (270 < ¢ < 360)
45 <1 <90 — + CP for right-handed helix (90 < ¢ < 180)
— CP for left-handed helix (180 < ¢ < 270)




If we can determine rough pitch angle and helicity for
jets believed to have helical fields, can predict sign of
CP — and in certain cases, we can:

1) Pitch angle — from observed LP structure (small
pitch angle = dominant B field along jet, large
pitch angle = dominant B field orthogonal to jet)

2) Helicity — from Faraday-rotation gradient across jet




Faraday rotation — rotation of the observed plane of LP
when polarised EM wave passes through a magnetised
plasma, due to different propagation velocities of the RCP
and LCP components of the EM wave 1n the plasma.

The amount of rotation 1s proportional to the square of the
observing wavelength, and the sign of the rotation 1s
determined by the direction of the line of sight B field:
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If jet has a helical B field, observe Faraday-rotation gradient
across the jet — due to systematically changing line-of-sight
component of B field across the jet.

LOS B away
from observer

L.OS B towards
observer

X
B
Jet axis
/

This 1s a LH helix.
©




Of the 36 AGN with detected parsec-scale CP at 2 cm
(Homan & Wardle 1999, Homan & Lister 2006, Vitrishchak
& Gabuzda 2007), we have 1dentified 8 with Faraday-
rotation gradients across their jets (Asada et al. 2002; Taylor
1998, 2000; Zavala & Taylor 2003; Gabuzda et al. 2007) and
reasonably clear linear polarisation structure:

Observed linear polarisation structure = pitch-angle regime

Direction of Faraday-rotation gradient = helicity.




Right-handed helical B field
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FR gradient across jet

“Spinet+sheath” (L) B field



AGN

Helicity

Predicted

CP sign

Observed
CP (%)

0735+178

Left

—0.30

1156+295

Left

—0.27

3C273

Right

—0.45

3C279

Left

+0.30

3C345

Left

+0.17

1749+096

Left

—0.42

2230+114

Right

—0.48

2251+158

Right

Predictions are correct in 8 of & cases!

Probability of this happening by “luck” is ~ 0.4%
(according to binomial probability distribution).
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Moral of this story:

There 1s now direct evidence that the CP of
AGN i1s intrinsically linked to presence of
helical jet B fields; variations 1n magnitude and
sign of CP may reflect variations in
configuration of associated helical fields.

Correlations between y-ray and CP variations

would imply direct connection between
properties of y-ray radiation and helical B-field
structure.




Faraday rotation measures of VLBI “cores” long

known to be variable in magnitude (e.g., Taylor
2000).

We have found several cases where core RM 1s also
variable 1n sign — we are now 1nvestigating this
behaviour using VLBA observations of several AGN
at 0.7+1.3+1.9+2.3+3.44+3.8+5.9+6.5cm

(O’Sullivan & Gabuzda 2007, in prep).

Example — BL Lac: observations of Reynolds,
Cawthorne & Gabuzda (2001) and Zavala & Taylor
(2003) showed core RM of + a few hundred rad/m?,

while those of Gabuzda et al. (2006) and [Mutel &
Denn] showed core RM of — a few thousand rad/m? .




Gabuzda et al. (2006) — March 2004 — core RM large and +
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Results of new obs — both high- and low-frequency “core”

clearly show negative RM, but region of positive RM also

visible 1n northern core region
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RM maps each based on 3—4 wavelengths
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Moral of this story:

Large observed changes in the core properties, such as
Faraday rotation measure, may be due to changing
relative contributions of distinct sub-regions within the
observed “core”.

By looking for characteristic “core” state during y-ray

active/quiescent states, may be able to infer a particular
core “‘sub-region’ which 1s associated with the y-ray
emission. Core LP, CP or RM (both magnitude & sign)
may play key roles in distinguishing between variations
of B, n, within a single core sub-region or variations in
relative strengths of two or more sub-regions.




Joint VLBI-GLAST studies hold great promise — and
should include “long-wavelength” effects such as
Faraday rotation and Faraday conversion!




Bconv along +x
direction, E L Bgen

Angle between B
fields — relative

phase between two E E,s Oelayed mode
field components —
direction of rotation of EFIE
tip of E vector —

sign of CP




Left-handed helical B field
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FR gradient across jet

Predominantly 1 B field



Homan & Lister 2005
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Additional evidence

helical B fields are
involved: CP detected 1n
jets of several sources!
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Thais 1s very natural 1f
the CP 1s associated
with helical jet B
fields.
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